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EXECUTIVE SUMMARY 

The South Eastern Australian Climate Initiative (SEACI) was established in 2005 to investigate the causes, impacts 

and prediction of climate variability and change in south-eastern Australia. The first three years of SEACI made 

progress in characterising and explaining the nature and causes of the recent drought, produced climate and 

runoff projections out to 2030, and improved seasonal forecasts of rainfall and runoff across south-eastern 

Australia. 

These research findings are summarised in the report Climate variability and change in south-eastern Australia: 

A synthesis of findings from Phase 1 of the South Eastern Australian Climate Initiative (SEACI) available for 

download from <http://www.seaci.org>. 

Research in Phase 2 of SEACI is building on the findings of Phase 1. It is a three-year, $9 million research 

partnership between the Murray–Darling Basin Authority, the Victorian Government Department of 

Sustainability and Environment, CSIRO Water for a Healthy Country Flagship, the Bureau of Meteorology and the 

Australian Government Department of Climate Change and Energy Efficiency. The SEACI study area incorporates 

the Murray–Darling Basin, the state of Victoria and southern South Australia, including the Eyre Peninsula. 

Research in Phase 2 of SEACI is conducted through three related themes. This report summarises the progress 

made in the second year (2010/11) of Phase 2 of SEACI. Progress made in the first year of Phase 2 is summarised 

in the Program Annual Report 2009/10 (CSIRO, 2010a). 

Theme 1: Understanding past hydroclimate 

variability and change in south-eastern Australia 

Research in Theme 1 is contributing to a better understanding of the factors that influence climate and 

streamflow within south-eastern Australia (SEA). Having previously established the relationship between south-

eastern Australian rainfall and the Sub-Tropical Ridge (STR) intensity and position, the focus this year has been to 

investigate the relationship between this key controller of SEA rainfall and large-scale indices of the Mean 

Meridional Circulation such the Australian Monsoon Index and the intensity and latitudinal extent of the Hadley 

circulation.. The overall picture emerging is that the changes seen across SEA are part of changes in large-scale 

atmospheric circulation patterns and, in turn, in climate affecting the entire southern hemisphere. For example, 

a range of datasets and methods indicate that the tropics are expanding, pushing the downward descending 

arm of the Hadley circulation further south. Although not very large (of the order of 0.5° per decade), evidence 

for this expansion appears very robust. One important finding was that changes in both the Sub Tropical Ridge 

intensity (STR-I) and Sub Tropical Ridge position (STR-P) are related to the expansion of the Hadley circulation. 

While this was anticipated for the STR-P, this is a surprise for the STR-I, which was expected to relate more to the 

intensity of the Hadley cell. These observed changes are changing the nature of the rainfall across SEA: rain 

bearing systems affecting SEA are less often due to mid latitude cyclones and increasingly due to larger systems 

located further north. This signal is seasonally dependent and peaks during summer and autumn, providing 

insight into the observed autumn rainfall deficit. Finally, a climate model reproduced the expansion of the 

Hadley circulation only if anthropogenic influences on atmospheric greenhouse gas and particle concentrations 

were included in the model. Furthermore, the model also related the strengthening of the STR to the expansion 

and not the intensity of the Hadley circulation. 

Research has also continued into understanding the relationship between hydrological drivers and responses 

using the CableDyn model. The latest model results show that precipitation is the dominant determinate of 

discharge with an increase/decrease in rainfall being amplified by a factor of 3 for wetter catchments in SEA and 
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8 for drier catchments. Temperature and CO2 concentrations have smaller, but still significant impacts on runoff 

with discharge reducing by 4 to 9 percent per degree temperature increase.  The effects of CO2 on runoff are still 

being investigated.  

Theme 2: Long-term hydroclimate projections in 

south-eastern Australia 

Research in Theme 2 aims to improve long-term projections of climate and streamflow for south-eastern 

Australia. In 2010/11, we assessed the ability of the 24 IPCC AR4 global climate models to represent a range of 

selected climate variables and large-scale climate drivers across SEA. Having done this, we selected the better 

performing models and explored the implications of weighting and/or selection for future rainfall projections for 

the region. Results showed that the CSIRO-MK3.0 and MIROC3.2-MEDRES models were the best performing 

across SEA, followed by CGCM-T47, CSIRO_MK3.5, IPSL-CM4, INM-CM3.0, MRI-CGCM2.3, and CNRM-CM3 (see 

main text for explanation of these acronyms). Other models i.e. MIROC3.2.-HIRES, NCAR-CCSM, GFDL-CM2.0, 

ECHAM-MPI, NCAR-PCM, UKMO-HadCM3 and GFDL-CM2.1, are also classified as ‘best performing’ but they do 

not have the required data for the analogue downscaling technique or potential evapotranspiration data. The 

median annual rainfall projections from the first eight best models are drier than the median from all 24 models. 

Work also began on assessing a range of downscaling methods across SEA, including pattern scaling, dynamic 

downscaling using the Weather Research and Forecasting (WRF) model and analogue downscaling. Initial results 

suggest that the analogue downscaling technique may be useful; however more work is required in order for 

the method to produce daily rainfall time series that are sufficiently similar to the observed daily rainfalls for 

direct use in hydrological models. Research into the potential use of WRF is continuing. However, at this point in 

time, the pattern scaling technique is still the most robust for use in climate-change studies with an emphasis on 

hydrology. One note of caution is that the current generation of pattern-scaled results are based on climate 

model projections which only cover up to around 2.0 °C of global warming. Extrapolation beyond this range 

therefore should be undertaken with caution. 

Research was also carried out to determine if observations demonstrated changes in the rainfall-temperature-

runoff relationship for 34 catchments in SEA. Of these 34 catchments, 22 had a statistically significantly different 

rainfall-streamflow relationship during the recent drought, and 18 had a statistically significantly different 

temperature-streamflow relationship. Of the average 46 percent reduction in streamflow during the recent 

drought, 65 percent was accounted for by reductions in annual rainfall, 7 percent by increases in temperature, 

and 28 percent was unexplained. Further analysis of these catchments suggested that runoff-generating 

processes have changed to a greater extent in the low-rainfall catchments of the southern SEACI region than in 

the high-rainfall catchments due to a change to the aquifer storage – outflow relationship in these (low-rainfall) 

catchments. To investigate this further, 17 catchments with streamflow and groundwater data prior to and 

during the recent drought were examined in more detail. This analysis suggests that that the majority of the 

reduction in streamflow in these catchments was due to an unprecedented deepening and drying of the 

unsaturated zone. However, there is still uncertainty as to whether there had been an increase in the number of 

farm dams during the recent drought which would act to confound these results. 
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Theme 3: Seasonal hydroclimate prediction in 

south-eastern Australia 

Research in Theme 3 is exploring the potential for improved seasonal forecasts of climate and streamflow. In 

2010/11, we assessed the improvements in climate forecasting obtained by using the new version of the 

Predictive Ocean Atmosphere Model for Australia (POAMA2) system by comparison with results obtained from 

POAMA1.5, focussing on the representation and prediction of the main climate drivers of rainfall in SEA. Our 

investigation showed that the influence of the Indian Ocean Dipole (IOD) is dominant in southern SEA in winter 

and early spring whereas the influence of central Pacific El Niño is strong in northern SEA in autumn to spring. 

POAMA2 demonstrates improved skill in predicting the variability of different types of El Niño – Southern 

Oscillation (ENSO) and sea-surface temperatures over the eastern Indian Ocean (the eastern pole of the IOD). 

POAMA2 demonstrates good skill at short lead times (zero to one month) in predicting rainfall in SEA for all 

seasons except for late autumn and summer. POAMA2 shows good skill in late winter to early summer at lead 

times of up to 2 to 4 months. Further improvements may come from using a dynamical multi-model ensemble 

which has been demonstrated to improve all aspects of forecast quality: accuracy, reliability, resolution and 

sharpness. 

We also investigated the use of dynamical model outputs as an alternative to the existing predictors in the 

Bayesian joint probability approach for forecasting seasonal streamflows. In particular, we used simulations from 

the Water Balance and Partition (WAPABA) model and rainfall forecasts from POAMA2. This new statistical-

dynamical modelling approach was applied to produce seasonal streamflow forecasts in 21 catchments with 

different climatic and catchment characteristics, on the eastern coast of Australia. The results indicate that 

forecasts produced using the outputs from the dynamic hydrologic model, are as good as those produced using 

the antecedent observations.  However, the use of hydrological modelling outputs as a predictor is attractive for 

operational forecasting because it eliminates the need for selecting predictors related to the initial catchment 

condition, thereby reducing the computational requirements to establish forecast models. In addition, the skill 

estimates based on forecasts of historical events are not artificially inflated as can occur with predictor selection. 

The streamflow forecasts produced using POAMA2 rainfall forecasts as predictors do not outperform, on 

average, forecasts made using climate indices. For many locations and seasons, POAMA rainfall forecasts 

introduce noise and reduce the forecast skill. However, for some catchments and seasons, inclusion of POAMA 

does improve the forecast skill. We suggest that Bayesian model averaging, over a range of models, using both 

climate indices and POAMA rainfall as predictors, could be a way to make use of the best available information. 

A highlight of 2010/11 is the adoption of the Bayesian joint probability approach by the Australian Bureau of 

Meteorology, with seasonal streamflow forecasts for 21 locations in SEA released to the public as of December 

2010. 
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CHAPTER 1: INTRODUCTION 

The South Eastern Australian Climate Initiative 

Phase 2 of the South Eastern Australian Climate Initiative (SEACI) is a three-year, $9 million research program 

investigating the causes and impacts of climate change and climate variability across south-eastern Australia. The 

SEACI geographical study area incorporates the Murray–Darling Basin, the state of Victoria and southern South 

Australia, including the Eyre Peninsula, as shown in Figure 1. 

Planning for future management of Australia’s water resources requires an understanding of the future state of 

Australia’s climate. This program aims to deliver a holistic and better integrated understanding of climate change 

and climate variability across south-eastern Australia to support water managers and policy makers. 

The research program includes studies of the nature and causes of climate variability on time scales from weeks to 

decades. This range of scales is relevant to the stakeholders. Issues on short-term time scales (weeks and months) 

arise in the operational management of water, while horizons for water resources planning and policy are of a long-

term nature (years and decades). 

SEACI is a partnership between CSIRO Water for a Healthy Country Flagship, the Australian Government Bureau of 

Meteorology, the Murray-Darling Basin Authority, the Victorian Department of Sustainability and Environment, and 

the Australian Government Department of Climate Change and Energy Efficiency. CSIRO is the managing agency. 

A Steering Committee, comprising representatives of each partner agency, sets and monitors the strategic direction 

of SEACI. In 2010/11 a representative from the Victorian Department of Sustainability and Environment chaired the 

Steering Committee (Campbell Fitzpatrick). The Steering Committee is supported by a Science Panel, which 

provides advice on implementation of the initiative. The Science Panel is chaired by an independent expert, Dr 

Graeme Pearman. 

In 2010/11 Dr David Post from CSIRO continued his role as SEACI Program Director. 

 

Figure 1. The study area of the South Eastern Australian Climate Initiative 
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Research context 

The variability of Australia’s climate has always been a challenge for water management and agricultural industries. 

Global climate change is now recognised as a threat to water resources, agriculture and natural ecosystems in many 

parts of the world. In south-eastern Australia, temperatures have been rising steadily and with the exception of 

2010/11, rainfall has been low since the 1990s. Similar rainfall declines started in the mid-1970s in south-west 

Western Australia, prompting the establishment of the Indian Ocean Climate Initiative (IOCI) in 1997. IOCI research 

focused on understanding variability and change in the region’s climate, and showed that climate change is likely to 

be a significant factor in the observed changes in the region. The clear benefits of IOCI motivated the establishment 

of SEACI. 

Findings from Phase 1 of the South Eastern 

Australian Climate Initiative 

Research in Phase 1 of SEACI included an investigation into the nature and causes of the Millennium Drought which 

occurred from 1997 to 2009 in SEA. Research concluded that this drought is unprecedented with regards to its 

extent, the low degree of inter-annual rainfall variability, and the seasons in which the rainfall has declined. In 

particular, SEACI research found that throughout the drought the rainfall decline was greatest in the autumn 

months, unlike in previous droughts where the rainfall decline was greatest in winter and spring. 

The STR is a band of high pressure which affects rainfall across southern Australia. SEACI research found a strong 

relationship between increased pressures along the STR and the recent rainfall decline. Further modelling studies 

conducted within SEACI showed that this observed intensification of the STR could only be reproduced when 

human influences on atmospheric greenhouse-gas and particle concentrations were included. This suggests a link 

between global warming and the recent rainfall decline in SEA. 

Research throughout Phase 1 of SEACI also showed that the 13 percent decline in rainfall in the southern Murray–

Darling Basin during the Millennium Drought led to a 44 percent reduction in streamflow. The magnitude of this 

reduction in streamflow was greater than expected. This is thought to be likely due to the absence of wet years over 

the decade, and to the seasons in which the rainfall has declined. The decline in autumn rainfall has meant that 

winter rains must moisten the soil before any useful streamflow can begin. It is expected that in the future this effect 

will be amplified as average temperatures across the region continue to rise due to climate change. 

Phase 1 of SEACI also achieved improvements to the coupled atmosphere–ocean–land climate model (POAMA) to 

increase the accuracy of seasonal forecasting, especially for SEA. Ongoing research efforts will further refine POAMA 

and aim to increase the accuracy of prediction at longer lead times. 

Research in Phase 2 of SEACI is building upon the findings and progress made in Phase 1. Phase 2 is addressing key 

research questions through three linked research themes, described below. 

Details of the findings of Phase 1 of SEACI can be found in:  

CSIRO (2010) Climate variability and change in south-eastern Australia: a synthesis of findings from Phase 1 of the 

South Eastern Australian Climate Initiative (SEACI). SEACI report, 36 pp.  

<http://www.seaci.org/publications/documents/SEACI-1%20Reports/Phase1_SynthesisReport.pdf> 
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Research themes 

Theme 1: Understanding past hydroclimate variability and change in 
south-eastern Australia 

Research in Theme 1 will lead to a better understanding of the factors that drive changes in both climate and 

streamflow within the region. The projects aim to understand and attribute causes of observed climate change in 

SEA, as well as diagnose the relationships between climate variability and the water balance. 

The projects in Theme 1 are: 

Project 1.1: Understanding and attributing climate change in SEA. 

Project 1.2: Impact of climate variability and change on the water balance. 

Theme 2: Long-term hydroclimate projections in south-eastern Australia 

Research in Theme 2 will lead to improved hydroclimate projections for SEA. The research aims to identify the most 

suitable global climate models assess methods for downscaling projections from these models to obtain 

catchment-scale climate series, and adapt hydrological models to represent changed rainfall–temperature–

streamflow relationships and dominant hydrological processes in a warmer, drier environment with increased levels 

of CO2. 

The projects in Theme 2 are: 

Project 2.1: Climate change projections. 

Project 2.2: Hydroclimate impacts for SEA. 

Theme 3: Seasonal hydroclimate prediction in south-eastern Australia 

Theme 3 is aiming to improve predictions of rainfall and streamflow on timescales of around 1 to 12 months in SEA, 

extending to the development of operational products. It assesses the skill of models in producing useful 

predictions of streamflow. Additionally, it is further developing modelling approaches and assessing the utility of 

seasonal forecasts in improving the skill of hydrological modelling for SEA. 

The projects in Theme 3 are: 

Project 3.1: Advancing seasonal predictions for SEA. 

Project 3.2: Hydrological application of seasonal predictions. 
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About this report 

This report provides detailed information about the progress made in each of the six SEACI research projects in the 

2010/11 financial year. Publications arising from this year’s research are listed at the end of the document. 
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CHAPTER 2: PROJECT 1.1 

Understanding and attributing climate change in south-eastern Australia 

Bertrand Timbal, Hanh Nguyen, Chris Lucas, Morwenna Griffiths, Kirien Whan, Robert Fawcett, Harry Hendon, 

Wenju Cai, Tim Cowan and Peter van Rensch. 

Abstract 

Across the many activities undertaken as part of this project, a clear focus on the meridional circulation and 

its various components is emerging. This is particularly true for autumn, the key season of the on-going 

rainfall deficit. The project has seen a large number of new developments investigating new or existing 

datasets using novel approaches and methodologies. Having established the relationship between SEA 

rainfall and the Sub-Tropical Ridge (STR) intensity and position, the focus this year has been to investigate 

the relationship between this key controller of SEA rainfall and large-scale indices of the Mean Meridional 

Circulation (MMC) such as the intensity and latitudinal extent of the Hadley circulation, and a Northern 

Australian Circulation Index based on lower tropospheric zonal winds. A particular effort has been made to 

access all existing global reanalyses of the atmosphere to ensure an appropriate sampling of the errors in 

our knowledge of the climate mean state. In particular, as it is well recognised that global observing systems 

markedly improved in the late 1970s, many analyses presented here focus on the period from 1980 to the 

present when satellite data are widely used. 

The picture emerging across the entire project is that SEA has been affected by large-scale changes that are 

affecting the entire Southern Hemisphere. It was found across a range of datasets and methods that the 

tropics are expanding. This is changing the nature of the rainfall across SEA: rain bearing systems affecting 

SEA are less often due to mid-latitude cyclones forming part of the storm track but increasingly due to larger 

systems centred further north, hence increasing the relationship between SEA rainfall and the northern half 

of the continent. The broadening of the tropics is one aspect of the broadening of the MMC which is 

apparent in all existing reanalyses. Although not very large (of the order of 0.5° per decade), evidence for 

this expansion appears very robust. The extent of the broadening of the tropics is seasonally dependent and 

peaks during summer and autumn. This provides insight into the observed autumn rainfall deficit. It appears 

to be the critical period in which the peak of the MMC changes (i.e. summer and autumn) overlaps with the 

period during which the relationship between the STR (the surface signature of the MMC) and SEA rainfall is 

strongest (this relationship peaks during winter but starts to be significant from April).  One important 

finding was that both changes in STR-I and STR-P are related to the expansion of the Hadley cell. While this 

was anticipated for the STR-P, this is a surprise for the STR-I, which was expected to relate more to the 

intensity of the Hadley cell. 

Finally, these changes were investigated using a climate model. It was found that the model reproduces an 

extension of the cell only if human influences on atmospheric greenhouse-gas and particle concentrations 

were used, either alone or combined with natural external influences. The widening of the southern 

hemisphere cell is a highly likely feature since it is reproduced in every single climate model simulation that 

includes these human effects (10 in total). Furthermore, the model also related the strengthening of the STR 

(observed in the model as well) to the expansion and not the intensity of the cell. 
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Background 

Phase 1 of SEACI made substantial progress in documenting recent climate change in SEA and identifying 

the large-scale circulations that control the regional climate of SEA including the El Niño – Southern 

Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Southern Annular Mode (SAM). Key findings were 

that the recently observed decline in rainfall in SEA has occurred predominantly in the autumn and early 

winter, and that much of this decline is accounted for by an increased intensity of the STR. In addition, it was 

established that the rise in the STR-I followed the rise of global temperature. Although the STR-I and STR-P 

are convenient diagnostics closely linked to rainfall in SEA, the causality of the global temperature–STR 

relationship remains to be established and requires further investigation. 

During the first year of Phase 2 of SEACI, further progress was made in better understanding and attributing 

the ongoing rainfall deficiency in SEA.  The characterisation of the severity of the recent drought was 

improved by analysis of a longer set of data from the instrumental record.  This provided a better 

comparison of the severity of the rainfall deficiency in the recent drought relative to that of the Federation 

drought. The annual cycle of the natural variability of rainfall in SEA and its relationship with the annual cycle 

of the ongoing rainfall deficiency was analysed, quantifying identifying the amount of natural variability 

which is not due to large-scale forcings but weather noise. Finally, an important contribution was to review 

the existing literature regarding the MMC of the atmosphere, its observed changes, and likely response to 

global warming with a focus on relevant features for climate in SEA. 

Objectives 

The objectives for 2010/11 were to: 

• refine the analysis of SEA rainfall using daily rainfall statistics and fine-scale features: defining 

rainfall entities, tracking their directions and identifying relationships between temperature and 

rainfall 

• identify synoptic systems using the cyclone tracking package developed at the University of 

Melbourne, but not following the traditional grouping of months into seasons, so as to capture any 

robust fine temporal structure in the available data 

• continue to evaluate the combined roles of the changes in STR-I and STR-P in the autumn rainfall 

decline with a focus on the interactions between the two using non-linear statistics 

• diagnose aspects of the meridional circulation and its trends from observations:  tropopause 

height (as a proxy for the edge of the Tropics as derived from radiosonde data) and MMC intensity 

and extent using the latest reanalyses (ERA-interim and others as they become available) 

• analyse existing climate simulations (ensembles with external influencing factors included with the 

CCSM3 model) to (i) evaluate the climate model’s ability to reproduce the meridional circulation 

changes, and (ii) the possible attribution of these changes 

• evaluate the interactions between the reversal of  the Australian monsoon and SEA rainfall. 
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Methods 

Refined analysis of SEA rainfall (Objective 1)  

Additional work on describing the rainfall decline in SEA was again carried out using the Australian Water 

Availability Project (AWAP) rainfall data. SEA was defined as continental Australia south of 33.5 °S and east of 

135.5 °E. The work previously performed with a limited station network to capture SEA rainfall variability and 

extend the record back in time was revisited. A more limited network was created (Figure 2) which allowed 

us to extend the record as far back as 1865, while still reproducing 95 percent of the month-to-month 

variability of the AWAP-based rainfall average across SEA. 
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Figure 2. All sites considered to reconstruct SEA rainfall: Melbourne (A), Cape Otway (B), Mount Buninyong (C), 
Bukalong (D), Wentworth (E), Deniliquin (F), Gabo Island (G), Sydney (H), Swan Hill (I), Bendigo (J), Mount Gambier 
(K), Sale (L), Adelaide (M), Naracoorte (N), Wagga Wagga (O), Goulburn (P), Yan Yean (Q), Auburn (R) and Port 
Lincoln (S). Letters indicate the primary sites, the small green circles indicate location of actual stations when 

composites are used. The chosen network to extend records back to 1865 was based on 11 sites: M, A, Q, C, D, H, K, 
J, B, I and P. 
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In addition to rainfall in SEA, additional analysis was performed on a small area in Victoria strategically 

located to depict the fine details of the large-scale influences affecting rainfall in SEA. This analysis 

contributes to understanding the interactions between the orography and the large-scale influences. The 

area is the Eildon catchment on the north side of the Great Dividing Range and Melbourne Water’s main 

catchment area on the south side (Figure 3). In the analysis, Melbourne Water catchments were further sub-

divided between the Western catchment area and the Thomson catchment which is located on the Eastern 

side of the vertical ridge line connecting to the Great Dividing Range at a location known as ‘The Triangle’. 

Rainfall and streamflows on the three sides of this triangle were analysed. Streamflow data were sourced 

from the Victoria Department of Sustainability and Environment for the Eildon catchment and Melbourne 

Water for the other catchments. 

 

 

Figure 3. Topographic map of SEA showing the Murray-Darling Basin (yellow line) and the small catchments for 
which rainfall variability and trend were analysed in detail (black lines) 

 

Daily rainfall “entities” (ie contiguous area experiencing rainfall on a particular day) were developed using 

based on an objective analysis of Australian Water Availability Project (AWAP) daily rainfall maps. Several 

techniques were evaluated to identify spatially consistent rainfall patterns on a daily timescale and 

aggregate them into a single entity. These techniques are commonly used  in radar-based rainfall analysis 

and for the evaluation of high-resolution Numerical Weather Predictions. Several criteria were developed 

and tested to define these climate entities and to answer questions such as: 

The maximum distance between two rainfall systems (i.e. within a close contour) allowed for these two 

system to be part of the same “entity”? The answer to this question is related to the contour level chosen 

and also to the next question: 

What total rainfall value within a close contour is sufficient to be meaningful and included into a bigger 

structure? 
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In the course of the development of the method to define rainfall entities, smoothing techniques (Fast 

Fourier Transformed of the original Australian Water Availability Project daily field) were tried and found 

helpful in defining the entities and in defining thresholds objectively. Cases of rainfall entities emerging 

from daily rainfall maps are illustrated in Figure 4. Using this method, several data series have been created 

to describe these entities based on the: 

• centre of the rainfall entities using weighted rainfall amount 

• total rainfall volume of each entity 

• total coverage space of each entity. 

 

 

  

  

Figure 4. Examples illustrating the definition of rainfall entities (left maps) compared to the daily Australian Water 
Availability Project rainfall (right) on the 12th (upper) and 13th (lower) July 1990. In both days, two entities were 
identified (red in the west, brown in the east). Note that small localised rainfall patterns are omitted from the 

entities. 

 

From these series, it is possible to derive additional quantities (e.g. mean intensity) and relate them to 

particular regions (e.g. SEA). As an illustration, the climatology of the centre of the rainfall entities from 1990 

to 1998 is shown for the four calendar seasons (Figure 5). At this stage, the analysis of the 110-year 

climatology of daily rainfall entities identified across the Australian continent has started focusing on the 

entities relevant to rainfall observed in SEA. This work is to be extended by adding a tracking capability to 

the developed software. 

 

 



 

10 Program Annual Report 2010/11 

Relationship between STR-I and STR-P (Objective 3) 

The non-linear analysis of the interplay between STR-I and STR-P was performed using Classification and 

Regression Trees (CART), a binary recursive partitioning technique first developed in the 1980s. CART has 

been employed in many research fields including ecology and genetics but rarely in climatology. Decision 

trees are constructed that seek to describe the variability of one response variable with respect to several 

predictor variables. These trees are particularly useful for multiple correlated predictor variables, such as has 

been shown with STR-I and STR-P. Seasonal average rainfall in SEA based on the AWAP dataset was 

separated in three terciles (below, normal and above) and classification trees were constructed using STR-P 

and STR-I as two predictors. This method allows the evaluation of the relative importance of the two 

predictors (e.g. which one is identified first in the tree) and how the two predictors combine (e.g. the non-

linear interactions of the two predictors of rainfall in SEA) in succeeding splits of the tree. 

 

Figure 5. The 111-year climatology of the location of the geographical centre of daily rainfall entities across 
Australia in the four calendar seasons. Every pixel is a 50 by 50-km box and the numbers are expressed as a total 

for the calendar season. 

Investigation of the MMC and Attribution of Changes (Objectives 4 and 5)  

The MMC was investigated using all existing reanalysis datasets. These include: 

• three versions from the NCEP (NCEP-NCAR, hereafter NCEP; NCEP-DOE II, hereafter NCEP2; and 

CFSR) 

• two versions from the ECMWF (ERA40 and ERA-Interim) 

• the NASA reanalysis (MERRA) 

• the Japanese 25-year Reanalysis Project (JRA-25). 
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From these datasets we are using monthly mean. These products have different spatial and vertical 

resolutions: 

• NCEP and NCEP2 : 2.5°, 17 levels 

• CFSR: 0.5°, 36 levels 

• ERA40: 2.5°, 23 levels 

• ERA-Interim: 0.75°, 37 levels 

• MERRA: 2/3° x 1/2°, 42 levels 

• JRA25: 1.25°, 23 levels. 

The common period of study is 1979–2009 except for ERA40 which ends in August 2002 and ERA-Interim 

which starts in 1989. For these latter datasets, the missing periods were filled using a linear scaling from the 

other five datasets by performing a basic multiple linear regression. 

The Hadley cells are defined in terms of the intensity and extent of the zonal mean meridional 

streamfunction (ZMPSI) as displayed in Figure 6. We define the extent of the Hadley cells by the zero line of 

the ZMPSI on the poleward side of these cells averaged between 400 and 600 hPa. The zero line is obtained 

after linear interpolation of the vertically averaged ZMPSI with a 0.5o latitudinal resolution. The intensity of 

the Hadley cells is defined by the vertical mean of maximum ZMPSI defined for each pressure level within 

the cells. 

 

Figure 6. Cross section of the zonal mean mass streamfunction averaged over 1979-2009 used to diagnose the 
Mean Meridional Circulation (units are 109 kg s-1). The Southern Hemisphere is toward the left, positive values 
indicate clockwise rotation. On both sides of the Equator, the two largest cells are the Hadley cells (blue in the 

Southern Hemisphere as it rotates anti-clockwise). The width of the cell was measured by the average location of 
the average zero line between 400 and 600 hPa. The intensity of the cell was computed as the vertical average 

along the profile of maximum value. 

The MMC was also investigated in simulations with the Community Climate System Model version 3 

(CCSM3), developed at the National Center for Atmospheric Research (Colorado). The model was run with 

well-defined external forcing separated in three groups (Meehl et al., 2006): 

1. anthropogenic forcing AF), which includes greenhouse gases, aerosols and stratospheric ozone 

2. natural forcing (NF), which includes variations of the solar constant and volcanic eruptions 

3. full forcing (FF), which combines (1) and (2). 
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Each ensemble consists of five simulations with slightly different initial conditions (starting around 1850) 

enabling an estimation of the uncertainty of the climate signals. All 20th century simulations were run until 

the end of 1999. 

A largely independent source of data that has been poorly exploited in understanding tropical expansion is 

the radiosonde data. On a global scale, the radiosonde sampling of the atmosphere is poor, particularly in 

the Southern Hemisphere. However, on regional scales the sounding network is dense and, after extensive 

data treatment, we believe adequate to the task. In this study, tropical expansion in the Southern 

Hemisphere is examined using the historical radiosonde network over the broader Australia – New Zealand 

region and South America over the period 1979–2010 (Figure 7). The radiosonde data from Australia – New 

Zealand are very good, with good spatial coverage and largely complete records; the South American data 

have poorer coverage in both time and space. The tropopause height-frequency technique is used to 

identify the edge of the tropics. Annual time series of the number of days with tropopause height exceeding 

14.5 km at individual stations for each region are combined into zonal averages over latitude bands of 3 to 5 

degrees. A technique to account for the ‘sampling bias’ introduced by uneven and/or incomplete sampling 

of the annual cycle is applied and provides consistency to the results, particularly over South America where 

these issues are more significant. The time-latitude field of tropopause height above 14.5 km is contoured, 

and changes in the position of the contours are used to identify the trend. 

 

 

 
 

Figure 7. Location of the upper air sounding data used in the Australian – New Zealand (left) and the South 
America (right) sectors. The dashed line indicates the latitude bands used to separate the data. 

Role of the Monsoon Reversal (Objective 6) 

In evaluating the role of the reversal of the Australian monsoon as a controller of autumn rainfall in SEA, we 

construct an index by averaging zonal winds of the lower troposphere (850 mb) over the area 0-15S and 

110-150E (using NCEP-NCAR reanalyses).  We refer to this index as the Northern Australia Circulation index 

(NACI), where a positive index represents an areal average westerly, associated with low surface pressure. 

The NACI definition combines two summer monsoon regions, as described in Wang et al. (2004) and 

Kajikawa et al. (2010). The focus is on two periods, 1948–1979 and 1980–2010, to highlight the circulation 

differences in the pre- and post-autumn rainfall reduction across SEA and the emerging influence of the 

NACI (e.g. Figure 22). The justification of this method of comparing two periods using NCEP reanalysis is 

robust and has been employed in previous studies (e.g. Frederiksen and Frederiksen, 2007); however, some 

concern still exists with using pressure data from NCEP in the high southern latitudes prior to 1979 (Marshall, 
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2003) due to the existence of spurious trends. Along with the expanding tropics is a poleward shift of the 

dominant processes controlling autumn rainfall variability in SEA.  To derive these dominant processes, we 

apply a statistical treatment, referred to as Empirical Orthogonal Function (EOF) analysis, on extra-tropical 

500 mb geopotential height (from NCEP-NCAR reanalyses) in the pre- and post-1980 period. The analysis 

separates the circulation field into several dominant spatial patterns, each having a time series that describe 

the evolution of the pattern.  

Results 

Long historical record of rainfall in south eastern Australia (objective 1) 

The network developed in the previous year of SEACI research was simplified further in order to extend the 

record back in time. The latest constructed network is based on only 11 sites with long continuous records 

all extending as far back as 1865, thus extending the previous record by 8 years. As was the case for the 

previous network, this latest network captures 95 percent of the month-to-month variability of rainfall in SEA 

as obtained by a straight averaging of the 0.05° AWAP analyses across SEA during the overlapping period, 

1900–2010. Annual values for the SEA network and the AWAP average are very close and 11-year running 

means for the two methods are nearly indistinguishable (Figure  8). 
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Figure  8. Annual SEA rainfall totals (blue bars) from 1865 to 2010 based on the 11-site network. Also shown are 
the 11-year running mean for the network (black line) and from the high-resolution AWAP rainfall analyses 

averaged over the SEA region (red line). The wettest year in the reconstruction is 1870 (922 mm). The driest year is 
1982 (329 mm). 



 

14 Program Annual Report 2010/11 

This record provides a good depiction of the drought at the time of Federation, thus confirming that the 

recent drought experienced in SEA is the worst on record. In addition, extending the record back by nearly a 

decade captures a new wettest decade on record -the 1870s- which appeared as wet as the recent wet 

decades in the 1950s and 1970s. This result is consistent with the argument developed in Phase 1 of SEACI, 

that: 

The period with the very high rainfall during the 1950s to the 1970s coincides with a period when 

the global temperature of the planet was stable (a pause amidst the 20th-century global warming). 

Very high rainfall observed at that time was due to that stability (see Timbal et al. 2010 for details).  

The argument is based on the relationship between rainfall, STR and global warming. Therefore it is 

interesting to observe that during the latter part of the 19th century, when no global warming was occurring, 

similar high-rainfall decades (e.g. 1870s and early 1890s) were observed on par with those observed in the 

1950s to 1970s. 

 

The interplay between orography and large-scale influences (objective 1) 

In this analysis, three catchment areas north-east of Melbourne in the Great Dividing Range were considered 

– Eildon (to the north), Thomson (to the east) and other Melbourne Water catchments: Watts river, 

Graceburn creek, O’Shannassy and upper Yarra)  (to the south).  The three Victorian catchment areas were 

also compared to the broader Murray Darling Basin). All three Victorian areas showed record breaking 

rainfall deficits in the 11 years prior to 2010 (Figure  9). 

 

Figure  9. 11-year month-by-month accumulated rainfall deficit for the four catchment areas.  The blue line shows 
the deficit for the most recent dry period. The other five lines show the next 5 dry non-overlapping dry decades 

from the historical record. The red line shows the accumulated deficit for the 11 years ending May 2011. Note the 
recovery of the accumulated amount of rainfall in all regions but more pronounced north of the Great Dividing 

Range (MDB and Eildon). 
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2010 saw a recovery in all regions. The recovery of the accumulated amount of rainfall is far larger north of 

the Great Dividing Range. This is due to 2010-11 being a typical wet year driven by tropical modes of 

variability and their associated influences (using the Tripole developed earlier in this project) with the impact 

diminishing on the southern side of the Divide. While the 2010 rainfall average for the entire MDB was the 

highest on record (807 mm, larger than the previous record of 784 mm in 1956) due to the large La Niña 

event in the Pacific and other positive large-scale influences, it was only the 7th highest value on record for 

the Eildon catchment (1516 mm, 12 percent lower than the 1956 record of 1724 mm), the 25th highest value 

for Melbourne Water west catchment (1702 mm, 25 percent lower than the 1952 record of 2275 mm) and 

the 32nd highest value for Thomson catchment (1557 mm, 30 percent lower than the 1952 record of 

2245 mm). 

Despite very favourable large-scale influences observed in 2010, rainfall across the all Melbourne Water 

catchment considered (Thomson and the western catchments) did not reach the record values observed in 

the 1950s. This is consistent with the fact that since the observed rainfall deficit started in 1997, while 

tropical modes of variability continue to explain the inter-annual variability between high and low runoff 

years within the Melbourne Water catchment as it did prior to 1997, it is centred around a reduced mean 

inflow (Figure 10). In the recent period, a favourable year due to tropical influence (positive tripole) provides 

less runoff within the Melbourne Water system than an unfavourable (negative tripole year) prior to 1997. 

This provides a clear example within SEA that tropical modes of variability (including ENSO and the IOD) do 

not account for the reduction in inflow since 1997. 

 

Figure 10. Average monthly inflow for all Melbourne water catchment considered before 1997 (1913-1996 shown 
by red stars) and after 1997 (1997-2010 shown by orange stars). For both periods, diamonds (triangles) show the 

positive (negative) tripole years in that period. The results are almost identical when a La Nina / El Nino 
classification is used. 
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Daily rainfall statistics: a new methodology to define rainfall entities and synoptic analysis 

(objective 1) 

This newly developed approach aims to describe rainfall in Australia and more particularly SEA from a daily 

perspective, but from a system approach rather than using station data. It is expected to provide additional 

insight about the rainfall-producing synoptic systems, in particular when at a later stage, additional 

functionality to track the rainfall entities will be developed and results will be compared to synoptic tracking 

system based on mean sea-level pressure field. 

The climatology of the location of the centre of rainfall entities (Figure 5) is consistent with our 

understanding of the mean annual cycle of rainfall across the continent. An early result worth mentioning is 

the proportion of the rainfall in SEA accounted for by entities with their centre located within the region 

(Figure11). (Note: it is possible that the percentages exceed 100 percent as the total rainfall amount is 

counted for every rainfall entity which is centred within the SEA region but some of this rainfall may have 

been experienced outside the SEA region). This proportion measures the amount of SEA rainfall which is due 

to localised rain bearing systems with geographical centres in the south (these systems are dominant in 

winter) versus broader rain bearing systems with geographical centres further north toward the tropics. This 

ratio has very large inter-annual variability but also a marked and highly significant downward trend, 

suggesting that recent daily rainfall systems tend to be larger and centred further north. In particular, 2010 

was the lowest proportion on record, with only 40 percent of the rainfall in SEA accounted for by systems 

centred in SEA, suggesting that in most instances rainfall in SEA during this large La Niña event was 

produced by large rainfall entities with strong tropical connections. 

Using the Melbourne University automatic tracking scheme to calculate cyclone trajectories in NCEP/NCAR 

reanalysis, it was found that events that have directly influenced SEA (here defined as the region from 135 °E 

to 150 °E and from 33 °S to 45 °S) have decreased in frequency and appear to originate from higher latitudes, 

particularly in April and May (Figure 12). This result is consistent with a poleward shift of the meridional 

circulation discussed in the later part of this report. 

 

Figure11. SEA annual rainfall (lower curve) and the percentage of the rainfall accounted for by rainfall entities for 
which the weighted centred falls within the SEA box (red curve) with the long-term linear trend fitted to the annual 

data (black line). Note that 2010 has the lowest value on record at 40 percent. 
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Figure 12. All cyclone tracks propagating through the box 135-150°E, 33-45°S (highlighted) occurring during April 
and May during the periods 1959-1975, 1976-1992, and 1993-2009. 

Joint effect of changes in the STR-I and STR-P in autumn: a non-linear perspective 
(objective 3) 

The STR – principally the STR-I but STR-P as well – has a strong and significant (at the 95 percent level) 

relationship with rainfall variability in southern Australia from April to November for the STR-I, and May 

through September for the STR-P (Table 1). However, it was shown during Phase 1 of SEACI using only linear 

statistics, that there was no combined effect of intensity and position, in autumn and winter, on rainfall in 

SEA due to the strong relationship between the two quantities. STR-I and STR-P are related for most of the 

year, with a significant correlation from April to December (Table 1). 

Table 1. Monthly correlation coefficients between STR-I and STR-P and SEA rainfall (SEA-R). Correlations with 
rainfall are calculated using detrended monthly means from 1900 to 2009, and from 1890 between the two STR 

series. Statistically significant (at the 95 percent level) values are in bold. 

Correlation 

coefficients 

STR-I and 

SEA-R 

STR-P and 

SEA-R 

STR_I and 

STR_P 

January 0.21 0.21 0.18 

February 0.00 0.35 0.05 

March 0.01 0.10 0.09 

April -0.48 -0.12 0.47 

May -0.71 -0.29 0.48 

June -0.64 -0.28 0.39 

July -0.60 -0.46 0.64 

August -0.69 -0.51 0.62 

September -0.42 -0.31 0.62 

October -0.39 -0.16 0.58 

November -0.30 -0.06 0.57 

December 0.05 0.04 0.47 

Annual mean -0.48 -0.20 0.53 
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The 30-year correlations between rainfall in SEA and the STR computed for each calendar month show that 

while the relationship with the STR-I is stable over time, this is not the case for the relationship with STR-P, 

for which large swings are observed as the STR shifts in position over time (not shown). In autumn, the key 

season of the rainfall decline in SEA, it interesting to note that as the STR has been moving south during the 

20th century, the negative relationship with rainfall in SEA has been contracting south for the STR-P but on 

the contrary expanding across most of eastern Australia for the STR-I (Figure 13). 

 

 

 

 

 

Figure 13. Correlation coefficients between STR-I (top row) and position (bottom row), in autumn (March through 
May) over 50-year epochs: 1900 – 1949 (Epoch 1) and 1960 – 2009 (Epoch 2). 
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These non-linearities were investigated further using the CART approach. Area-averaged precipitation data 

(terciles) for south-west eastern Australia were classified on the basis of STR-I and STR-P. In both seasons, 

STR-I was identified by the classification tree as the primary partition identifying the dry group, confirming 

the linear analysis. In the transition season of autumn, the time of year when the mean position of the ridge 

is on average over SEA, the position is important in distinguishing winter and summer-like wet rainfall 

groups, providing the STR-I is low (Figure 14). Vector wind analysis explains the composite of seasonal 

precipitation in terms of the different circulation patterns associated with these two wet groups and show 

that the two wet nodes (7 and 13) correspond to very different wind and moisture transport anomalies: 

stronger westerlies extending further north in the case of Node 13 (a winter-like wet autumn) and stronger 

easterlies north of SEA in Node 7 (a summer-like wet autumn). 

 

Figure 14. Anomaly maps displaying the seasonal precipitation composite (mm/year) in autumn (March through 
May) obtained using a CART analysis of the influence of the STR-I and STR-P on rainfall. Composites are based on 

seasonal means from 1900 to 2009. 

The frequency of wet and dry cases in each group was examined, with changes evident over recent years. 

Node 13, which was not uncommon during the wet 1950s and 1970s, has only been observed once in the 

last 13 years, since the March through May autumn rainfall decline in SEA started (1995). This contrasts with 

the summer-like wet autumn Node 13, which is a rare occurrence during the entire record. The research 

confirms that intensity of the ridge is the most important factor in explaining inter-annual rainfall variability 

across southern Australia but also demonstrates the additional role of STR-P in autumn. When the intensity 

of the ridge is high (Node 2), autumn rainfall is very likely to be low, but for the years when the ridge is not 

very strong, a shift further south of the ridge will in fact more likely bring a wet autumn (Node 7), while a 

more northerly position will prevent this and results in a average autumn (Node 12). These results explain 

the low correlation between rainfall and STR-P and why this relationship has evolved during the 20th century 

as the mean location of the ridge has shifted south in autumn. For that reason, linear statistics based on a 

century-long relationship will underestimate the combined effect of the STR-I and STR-P on rainfall in SEA 

due to these non-linear effects. Using linear statistics on shorter periods is not a solution either, as the 

relationship becomes insignificant as shorter periods are considered. 
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Table 2. Autumn classification from 1900 to 2009 in each terminal node; colour code for the year indicates dry 
(red), average (black) or wet (blue) years. 

Node 2 1902 1904 1910 1912 1918 1919 1920 1930 1934 1936 1939 1940 1941 1945 1947 1949 

1959 1961 1967 1972 1976 1980 1984 1985 1987 1988 1991 1992 1993 1994 1996 1997 

1998 1999 2000 2002 2003 2004 2005 2008 

Node 12 1901 1914 1915 1921 1922 1923 1924 1925 1928 1931 1937 1938 1942 1943 1946 1948 

1953 1954 1955 1957 1958 1962 1964 1965 1966 1969 1973 1975 1981 1982 1983 1986 

2001 2006 2009 

Node 13 1900 1903 1906 1907 1909 1911 1916 1917 1926 1927 1929 1932 1933 1935 1944 1951 

1952 1956 1960 1968 1970 1971 1977 1978 1995 

Node 7 1905 1908 1913 1950 1963 1974 1979 1989 1990 2007 

 

Expansion of the Tropics: a perspective from radiosonde data (objectives 4 and 5) 

In 2009/10, an extensive review of the existing literature was carried out. Recent studies have observed an 

expansion of the tropics or widening of the Hadley cell in multiple datasets, including the various global 

reanalyses (e.g. Birner, 2010; Hu and Fu, 2007) and satellite data (e.g. Fu et al., 2006). Reanalysis 

‘observations’ have been the primary source of data, although different metrics have been used to identify 

the widening, including the tropopause height frequency distribution methodology described by Siedel and 

Randel (2007), trends in the position of the jet stream (e.g. Archer and Caldeira, 2008), and the changing 

isobaric streamfunction (e.g. Hu and Fu 2007). These studies generally suggest that tropical widening is 

larger in the Southern Hemisphere, although the amount of widening indicated by the different studies 

shows considerable variation, depending on the methodology and dataset. The cause of this expansion is 

hypothesised to be an effect of enhanced greenhouse gases (e.g. Lu et al., 2009). The likely impacts of this 

expansion, particularly in the subtropics, are poorly understood beyond a general drying trend over the next 

century. 

In 2010/11 tropical expansion was investigated using upper-air sounding data. A key component of the work 

was to evaluate the data-quality issues and ensure that important issues were properly addressed. That work 

will not be covered in detail here, but rather this section will focus on the results obtained. Both the South 

American (SA) and Australia-New Zealand (ANZ) regions show a general poleward trend in position, i.e. an 

expansion of the tropics as evidenced by a general increase in latitude (i.e. a southerly trend) for the various 

contours of numbers of high tropopause days (Figure 15). This is overlain with inter-annual variability. With 

the exception of the 300-day contour, the regions show a good correspondence both in position and 

variability. The offset in the 300-day contour is apparently real, a regional feature of South America. 

Depending on the contour and region, expansion trends range from 0.2 to 1.2 degrees per decade, with 

most values in the 0.4 to 0.8 range. After accounting for measurement uncertainties, these trends are in most 

instances significant, exceeding the 2-σ contour intervals in 6 of 8 cases. Overall, the trends are also greatest 

in the early portion of the record, and ‘level off’ over approximately the last decade. In the South America 

region, trends are consistently larger and show less levelling off. In Figure 15, the annual data are grouped 

from June through May to better correspond with the annual ENSO cycle. A correlation analysis using the 

de-trended position data and annual Multivariate ENSO Index suggests that much of the inter-annual 

variability is related to the ENSO cycle. During La Niña years, the tropics expand. This is more prominent in 

the 100-day and 50-daycontours (where correlations are between 0.4 and 0.7). The large volcanic eruptions 

of El Chichón in 1982 and Mt Pinatubo in 1991 are also apparent as a reduction in the width of the tropics, 

more pronounced over the South American region. 
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The results suggest that some of the larger trends identified in the studies of tropical expansion mentioned 

earlier may be too large; our values are firmly in the low-to-moderate end of the spectrum that can be 

inferred from a review of the scientific literature. Further comparison with the various reanalysis data will 

give some insight into which reanalysis data should be used to more fully explore the observed impacts of 

this expansion, as well as some of the limitations and uncertainties in the reanalysis data. A better 

understanding of the sources of the inter-annual and regional variability in tropical expansion can provide 

information into the mechanisms involved and provide some understanding of what future climate changes 

might hold in store for SEA. 

 

Figure 15 . The positions of contours (300, 200, 100 and 50 days per year) for both the South America and 
Australia-New Zealand sector analyses. The plus signs on the left locate the mean position of the contours 

computed from 1979 to 2010. 

 

Representation of the Hadley circulation in the reanalyses (objectives 4 and 5) 

Firstly, the MMC is analysed across the seven reanalyses (Figure 16). All datasets exhibit comparable annual 

cycle. A marked seasonality of the cells in both hemispheres is observed in all datasets. These cells vary out 

of phase, maximising in hemispheric winter; the Southern-Hemisphere cell is generally more intense during 

this season. In addition the seasonal migration of the southern cell extent is less marked than its counterpart. 

The Northern-Hemisphere cell cycle has a triangular shape. In contrast, the annual cycle of the southern cell 

is more complex, tending to have a ‘figure eight’ shape. These hemispheric differences reflect the 

asymmetry of the Hadley cells, probably due to the different distribution of land and ocean in each 

hemisphere. There is also the hypothesis of unequal observation coverage, with the Northern Hemisphere 

being more important because of a larger land surface, which induces a less realistic feature of the Southern-

Hemisphere cell. 
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Differences between the datasets are particularly noticeable in the amplitudes. Namely, JRA-25 and NCEP 

are the most extreme. In NCEP, the northern cell maximum intensity is roughly 50x109 kg s-1 smaller and the 

minimum extent in spring is roughly 3o wider than the others. Note that the maximum extent in August is 

the largest of the seven datasets. The southern cell also differs in NCEP from the others, especially during the 

phase of intensity strengthening and extent narrowing between February and July. The narrowing is more 

rapid and more marked. The intensity associated with this is generally weaker; the maximum in July is about 

100x109 kg s-1 smaller. This also affects the July to December part of the annual cycle, with the intensity-

weakening rate being less marked. In JRA-25, the northern cell tends to have comparable features to NCEP 

with notably the minimum extent in spring and the maximum extent in August being the widest. In contrast, 

the maximum intensity in winter is similar to the others. The whole annual cycle of the southern cell is 

shifted roughly 2o poleward compared to the others, although the intensity is of comparable amplitude. 

In spite of this, the differences in representing the mean state, inter-annual variability of extent and intensity 

of the Hadley cells are similar amongst all the products (Figure 17), with variability in the extent being more 

consistent. However, as for the mean state, NCEP reanalyses appear to be an outlier exhibiting lowest 

variability in intensity, in contrast to MERRA or ERA40, which show strongest variability. Overall, they all show 

large variability of these variables in both hemispheres, and the intensity tends to show larger variability 

than the extent. Note that these variables evolve symmetrically in each hemisphere. Longer timescale 

variability is also clearly observed, especially the strong expansion and intensification of the Hadley cells and 

remaining so from 1998 to present. Finally, it is noted that there is no significant correlation between the 

time series of extent and intensity anomalies. 

We also noted that this inter-annual variability is seasonally dependent (not shown). For example, the extent 

in the Southern-Hemisphere cell shows a marked negative trend in December through February and March 

through May; the variability in September through November resembles the annual mean; and variability in 

June-July-August is negligible. Variability in intensity shows a semi-annual feature, with strongest anomalies 

not only in winter hemisphere but also in spring hemisphere when the mean intensity tends to be weakest. 

As mentioned earlier, a large part of the inter-annual variability in the MMC is likely to be related to ENSO. All 

datasets highlight significant (greater or equal than 90 percent) correlations between the ENSO index in 

December through February and the Hadley-cell extent: positive in the Southern Hemisphere and negative 

in the Northern Hemisphere. This suggests that warm episodes of ENSO are associated with shrinking Hadley 

cells and vice versa. In contrast, no relationship was found with the South Hemisphere intensity, as noted 

above. In the Northern Hemisphere, only three datasets (NCEP2, CFSR and ERAI) show significant positive 

correlation between ENSO index and Hadley cell intensity. 
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Figure 16. Annual cycle of the Northern and Southern Hemisphere Hadley cells intensity (negative numbers in the 
Southern Hemisphere indicated that the cell rotates anticlockwise) vs. extent across the seven reanalyses (shown 

in colour code). Months of the year are indicated by numbers. 

In the Southern Hemisphere, significant positive correlation is obtained between summer ENSO index and 

Hadley-cell extent in summer and autumn for all datasets, in the preceding spring as well but only for five of 

the 7 reanalyses (CFSR and JRA25 are the exceptions). This suggests that the ENSO influence in the Southern 

Hemisphere is marked for all seasons, except in austral winter, when the variability in the Hadley-cell extent 

is negligible. This result is somewhat counterintuitive since ENSO variability has a peak influence in 

subtropics such as Australia in winter and spring.  

Trends in the MMC are presented in Figure 18. All datasets show an expansion of the MMC of 0.5° per 

decade in the Southern Hemisphere (0.6° per decade in the Northern Hemisphere), consistent with the 

observed widening of the tropics from radiosonde data (Figure 15). However, there is a marked variability of 

the trends, ranging from 0.13° per  decade in CFSR to 0.79° per decade in JRA25 (0.09° per decade also in 

CFSR to 1.08° per decade in MERRA for the Northern Hemisphere). That consistent result confirms the 

consensus found during the review of the literature on that issue. It was, however, often observed that 

earlier results based on reanalyses were questionable since they were often obtained on longer period 

including the pre-satellite era and that could lead to spurious trends. This rigorous analysis (with a focus on 

the post-satellite era and sampling the uncertainties in the reconstruction of the atmosphere using 

reanalyses across 7 products raises the likelihood that these trends (consistent in sign and ranging from 0.1 

to 1.1° per decade) are real. They are lower than many prior estimates but consistent with our analysis based 

on upper air sounding. Nevertheless, it is worth pointing out that it is not possible to rule out the impact of 

changes in the global observing system (i.e. different satellites) which could still have an impact on these 

trends. 

SHN

NH
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Figure 17. The 19-month running mean anomalies of the Southern Hemisphere Hadley cells extent (top two 
panels) and intensity (bottom two panels). 

 

In contrast to the consistent expansion, trends in intensity are inconsistent amongst the reanalyses (Figure 

18b). In the Southern Hemisphere, four datasets show strengthening against three weakening. The 

weakening is found in CFSR, ERAI and JRA25 reanalyses, with trend values ranging from 0.17 percent per 

decade for NCE2 to 8.3 percent per decade for ERA40. In the Northern Hemisphere, only two datasets show a 

slight weakening (NCEP2 and ERAI) against the other five. The strengthening obtained in MERRA is 

particularly large (15.3 percent per decade). In contrast, NCEP2 and ERAI show a very weak negative trend. 

Previous studies suggested a strengthening of the northern cell in boreal winter. The results here further 

suggest the strengthening of the northern cell throughout the year. 

These trends also show a marked seasonality – as indicated in Table 3 for the extent and Table 4 for the 

intensity – in the Southern Hemisphere. The expansion tendency is observed in all seasons except winter, 

consistent with Hu and Fu (2007). The expansion is most pronounced during summer (0.93° per decade) and 

autumn (0.64 per decade). The range of expansion amongst the data is very large in summer, exceeding 1° 

per decade across the 7 products, less so in the other seasons (about 0.5° per decade across the 7 

reanalyses).  
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(a) 

 

(b) 

 

Figure 18. Trends in Hadley circulation extent (a) and intensity (b) from the seven reanalysis datasets computed as 
a difference of two 15 year periods (1980-1994 and 1995-2009). Results are shown for the Southern (grey filled 

bars) and Northern (orange empty bars) Hemispheres. 

 

Table 3. Seasonal trends of Hadley circulation extent (degrees) in the Southern Hemisphere as determined from 7 
different reanalysis data sets. The trends are computed as a difference of two 15 year periods (1980-1994 and 

1995-2009). 

Reanalysis 

data set 

December-

February 

March - 

May 

June-

August 

September-

November 

NCEP -1.17 -0.98 0.15 -0.3 

NCEP2 -2.24 -1.31 0.14 -0.62 

CFSR -0.73 -0.7 0.009 -0.11 

ERA40 -1.35 -0.96 0.1 -0.49 

ERAI -0.85 -0.77 -0.01 -0.44 

MERRA -1.73 -1.06 0.34 -0.96 

JRA25 -1.73 -2 -0.36 -1.2 
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In terms of intensity, the trends in summer are strongest (6.4 percent per decade) and generally show a 

weakening except for ERAI. The other seasons exhibit more inconsistency, although NCEP, ERA40 and 

MERRA exhibit weakening while CFSR and JRA exhibit strengthening.  

To summarise, the trend analysis suggests that both cells are widening and that is consistent across all 

products. In contrast, not all datasets agree on long-term trends in the intensity, although most of them 

suggest a strengthening. The Northern Hemisphere cell tends to widen and strengthen more than the 

Southern Hemisphere cell. There also seems to be more agreement in the Northern Hemisphere, possibly 

related to the better in situ data coverage. It is worth noting however, that theories about the MMC tend to 

suggest that the cells should widen and weaken together, and this is certainly the case when the annual 

cycle is considered. The results here suggest the cells are widening and strengthening. What causes both 

characteristics to evolve in the same direction has yet to be investigated. 

 

Table 4. As in Table 3 but for the intensity (percent with respect to the mean). 

Reanalysis 

data set 

December-

February 

March- 

May 

June-

August 

September-

November 

NCEP -10.09 -2.3 -5.42 -8.54 

NCEP2 -12.42 0.71 3.12 -3.74 

CFSR -1.09 5.34 7.33 2.62 

ERA40 -25.83 -13.4 -6.53 -17.03 

ERAI 5.78 -0.62 1.77 1.11 

MERRA -11.15 -1.28 -7.29 -13.24 

JRA25 -12.44 3.16 6.99 3.52 
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Relationship between the Hadley cells and the STR 

Strong and significant correlation between the extent of the Hadley cell in the Southern Hemisphere and 

STR in all datasets suggests that the extent of the Hadley cell is associated with both STR-I and STR-P (Figure 

19). The relationship between the expansion of the cell and the shift poleward of the STR was expected since 

the extent corresponds to the descending branch of the Hadley cell, which would correspond to high-

pressure anomalies at the surface. The surprise is that the STR-I is only poorly associated (low and non-

significant correlation) with the intensity of the cell. A stronger link is found between the Hadley cell 

expansion and the STR-I. This is likely to have important implications for climate variability in SEA, in 

particular in light of the high consistency amongst all reanalyses (and in the literature) on the expansion of 

the cells. 

 

Figure 19.  Correlation between the Hadley circulation, extent (L) and intensity (I) and STR location (L) and 
intensity (I) anomalies in the Southern Hemisphere. Black horizontal lines represent the 99 percent significance 

levels. 

 

Attribution of the changes in meridional circulation to external forcings (objective 5) 

Using the CCSM3 set of model experiments, we found that there is a general expansion of both cells 

observed in both all and human influences on atmospheric greenhouse-gas and particle concentrations 

(Figure 20a). This is particularly true in the Southern Hemisphere, where all five members in the two model 

sets display an expansion of the cells. While this result is consistent with the reanalyses, it is worth noting 

that the trends in CCSM3 are only about one-half to one-third of those in the reanalyses. This sort of ratio 

was also found in earlier SEACI work regarding the strengthening of the STR which was captured by the 

CCSM3 model provided that human releted effects were used (either alone or in the fossil fuel experiments). 

As it was the case for the STR, the trends in the experiments with human related effects are equally toward 

an expansion or a contraction with no trend for the ensemble mean. This is a strong suggestion that the 

observed expansion of the Hadley cell is mainly attributable to human influences. 
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Trends in Hadley-cell intensity show weakening of the cells in almost all model experiments in which the 

impact of human activities are tested, in contrast to the reanalyses (Figure 20b). Note also that, unlike in the 

reanalyses, in the model a weakening is noted associated with the expansion, that behaviour is in agreement 

with the theory. The amplitudes of the trends in the model are about 10 times weaker than in the reanalyses. 

Finally, as in the reanalyses, the CCSM3 model related the STR-I and STR-P to the Hadley-cell expansion 

(Figure 21). This result makes sense in the light of the results published during Phase 1 of SEACI: the 

intensification of the STR is only observed in the CCSM3 simulations with the impact of human activities 

included. This can now be related to the expansion of the Hadley cell, through the linkage between the cell 

expansion and the STR-I. 

 

(a) 

 

(b) 

 

Figure 20. Same as in Fig. 17 but from three different set of climate model simulations with different external 
forcings (anthropogenic forcings –AF-, Natural forcings –BF-, and both forcings together –FF-) of the CCSM3 

model.  

 

Figure 21. Same as in Fig. 18 from three different ensemble runs (FF, NF and AF) of the CCSM3 model. 
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Interactions between the northern Australian circulation, extratropical weather systems, 

and SEA rainfall (objective 6) 

Since the 1980s, autumn (March though May) rainfall across SEA, extending to much of eastern Australia has 

shown a strong decline. Despite the numerous studies researching the autumn rainfall reduction (e.g. Cai 

and Cowan, 2008; Nicholls, 2009; Timbal, 2009), the causes of the change and mechanism(s) remain elusive. 

In fact, processes controlling variability of autumn rainfall variability in SEA are not well understood. Prior to 

the 1980s, a strong relationship existed between the STR-I and SEA rainfall (Figure 22a), and between STR-I 

and STR-P (Figure 22b). Historically, when the relationship between the intensity and position of the STR is 

strong (i.e., a well-established STR), the influence of the STR-I on SEA rainfall strengthens. Around 1980, this 

relationship declined, offering an important clue for understanding the dynamics of the SEA autumn rainfall 

reduction.  One such process that can influence the establishment of the STR is the poleward expansion of 

the tropical circulation over northern Australia, including the reversal of the monsoonal winds.   

 

 

Figure 22. The 21-year sliding window March through May correlations over the period 1948-2008 of (a) SEA 
rainfall and STR-I, (b) STR-P and STR-I, (c) Northern Australian Circulation Index and SEA rainfall, and (d) Northern 

Australian Circulation Index and STR-I. Shaded regions are significant at the 95 percent confidence level. 

 

Given that the Hadley cell is expanding poleward, will the relationship between the northern Australian 

circulation and SEA autumn rainfall change? Using the NACI to describe the circulation in tropical regions 

north of Australia, we find that there is a strengthening correlation between NACI and SEA rainfall and 

between NACI and the STR-I (Figures 22c and 22d). The correlations become statistically significant at the 95 

percent confidence level in the post-1980 period.  This strengthening  influence from the north is further 

supported by the difference in the surface pressure patterns associated with NACI in the pre- and post-1980 

period (Figures 23a and 23b), suggesting that the influence of the dry season in the north has extended to 

the SEA region.  Further to this,  previous studies have shown that the transition to the northern Australia dry 

season has occurred earlier, leading to stronger easterlies in the NACI region in MAM, which could 

contribute to a lower autumn rainfall over SEA, as indicated in the NACI-SEA rainfall relationship shown in 

Figure 22c. 
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Figure 23. The March –May correlation of Northern Australian Circulation Index with mean sea level pressure, for 
the periods (a) 1948-1979 and (b) 1980-2010. Significant correlations at the 95 percent confidence level are within 

the black contours.  

Associated with the Hadley cell poleward expansion is a poleward shift of the dominant process controlling 

autumn rainfall variability in SEA, which we derive through EOF analysis.  Prior to 1980, the first and third 

EOFs of the 500 mb geopotential height reflect the aggregated weather systems emanating from the north-

west and the west (Figure 24a and Figure 24b), which affect variability of autumn rainfall in SEA, across 

north-west Victoria and western New South Wales (Figure 25a) and Tasmania (Figure 25b). The second EOF 

mode broadly represents the index of the state of the Southern Hemisphere climate system, the SAM that, 

over the past 30-years, has shown little influence on southern Australia autumn rainfall. In the post-1980 

period, these systems shift poleward (Figure 24c and Figure 24d, with the associated rainfall impacts in 

Figure 25c and Figure 25d). The influence from the northern Australia is embedded in the shifted pattern of 

the post-1980 period (Figure 24c), and its impact on Australian rainfall is shown in Figure 25c.  

Over the pre-1980 period, the weather systems emanating from the tropical Indian Ocean and the Southern 

Ocean influenced southern Australia rainfall in autumn. As the circulation system shifts poleward, so do the 

‘centres of action’ of these modes. Given that the upward trend of the SAM and the poleward shift of the 

mean circulation are shown to be induced by climate change (e.g., stratospheric ozone depletion, see Cai 

(2006), it follows that the poleward shift of these modes and the strengthen influence from the north is at 

least in part attributable to climate change. 
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Figure 24. The March-May one-standard deviation anomaly pattern of 500 mb geopotential height associated 
with its respective (a) EOF1 and (b) EOF3, over 25-70°S latitude band for 1948-1979. (c) and (d) are EOF3 and EOF1 
for 1980-2010, respectively. The variance explained by each mode is shown in brackets in the figure headings. 

Significant correlations at the 95 percent confidence level are within the black contours 

 

Figure 25. March-May maps of correlations between Australian rainfall and (a) EOF1 and (b) EOF3 of 500 mb 
geopotential height for 1948-1979. (c) and (d) are the correlation maps of EOF3 and EOF1, with rainfall, 

respectively, for 1980-2010. Significant correlations at the 95 percent confidence level within the black contours 
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Conclusions 

In 2010/11, Project 1.1 has had a strong focus on the key season of autumn, when most of the long-term 

deficiency in rainfall has occurred. The project has seen a large number of new developments investigating 

new or existing datasets using novel approaches and methodologies. 

In terms of improving the characterisation of the severity of the recent drought using surface data, using the 

AWAP daily gridded rainfall shows that rainfall entities have become larger events more connected to the 

tropics; streamflow data from selected catchments within SEA were found useful due to the amplification of 

the rainfall decline signal. The STR has continued to be used as a convenient proxy for the rainfall in SEA 

across the wet months from autumn to spring, either by relating changes in STR-P and STR-I and their joint 

effects on rainfall in SEA, or by relating these series to large-scale circulation indices such as the Hadley 

Circulation or the Australian Monsoon Index. 

As part of the effort to strengthen our conclusions about changes in atmospheric circulation patterns, all 

available reanalyses (seven) were accessed. Some of the calculations presented were performed across all 

products, thus ensuring an appropriate sampling of the error in our knowledge of the climate mean state 

due to the global observing systems. It is a useful approach due to the lingering doubts about using 

reanalyses for extended periods due to the increased reliance on satellite information within the reanalyses 

and the resulting spurious non-stationarity – a problem which is acute in the Southern Hemisphere and 

aggravated at higher latitudes. In particular, it was found beneficial to focus on the post-satellite era (1979 

onwards). This approach, whilst not without shortcomings as there is a continuum of changes in the global 

satellite coverage, is expected to alleviate some of the concerns about stationarity within the climatological 

record. In addition, upper air soundings were also explored to corroborate some of the results obtained from 

reanalyses. 

Alongside the traditional and well-known large-scale indicators of the state of the global climate (e.g. the 

STR-I, STR-P and Australian Monsoon Index), new diagnostics were developed such as the number of days 

when the tropopause height is above 14.5 km (as a proxy of the extension of the tropics) and an index 

measuring the strength and extent of the MMC (e.g. Hadley cells). As with classical indices, the relationships 

of these indices with SEA surface climate were explored. 

Finally, two new methods were investigated to update previous research . Firstly, non-linear statistics (i.e. a 

CART approach) were used to explore the joint effect of the STR intensification and shift poleward on 

autumn and winter rainfall in SEA. While linear statistics suggested that both could have contributed to the 

observed rainfall deficit, no additional effects were found when their combined influence was considered. 

The CART analysis provides an understanding for why this is the case and helps explain the subtlety of the 

influence of the STR in autumn. Secondly, while monthly to seasonal rainfall in SEA has been extensively 

explored in the past, daily rainfall was rarely touched on. A new approach was developed to evaluate 

continuous daily rainfall entities in order to evaluate how rain-bearing systems affecting SEA have evolved. 

This was done in conjunction with a more classical approach using synoptic tracking software. 

The picture emerging across the entire project is consistent and informative. SEA has been affected by large-

scale climate changes which are much broader than the direct vicinity of the Australian continent. The entire 

Southern Hemisphere is affected. 

The case for the abnormality of rainfall during the last 20 years has been strengthened by extending the 

instrumental record back in time (as far back as the mid 1860s). Analysis of this extended record has shown 

that the recent drought was clearly unprecedented in the historical record; it also adds evidence to the 

statement that very wet decades tend to be observed when global warming levels off, in contrast to very dry 

decades (the recent decade and the 1930s-1940s) which were observed at times of accelerated global 

warming. 
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Despite the very large La Nina event in 2010/11 which had Australia-wide impacts and resulted in a 

substantial recovery across the MDB, catchments south of the Divide nevertheless remain in an 

unprecedented long-term rainfall deficit compared to any period of the 20th century. In addition, the mean 

inflow into the Melbourne catchment dams has seen a step reduction since 1997 that is not related to the 

influence of the tropical modes of variability affecting SEA. It is also noticeable that most of the rainfall 

increases above average were observed in spring and summer, outside the peak of the observed rainfall 

deficiency in autumn and winter. In fact, for the core months of April, May, June and July in 2010 and in 2011, 

the 20 percent deficit observed in rainfall since 1997 has continued unabated. 

It has been observed that rain-bearing systems affecting SEA year-round are increasingly larger systems 

centred further north than SEA; this is corroborated by the observation that in autumn, rainfall in SEA is 

increasingly correlated with Australia-wide rainfall. In addition, in the key months of April and May, it was 

found that extra-tropical cyclones affecting SEA were strongly reduced and appear to originate from higher 

latitudes upstream. These two results, coupled with the CART analysis of the STR influence on autumn 

rainfall, suggest that as the STR has moved poleward, it has reduced the possibility for high-latitude fronts 

and lows to affect SEA, while allowing tropically-generated rain-bearing systems to penetrate further south. 

This is a secondary effect from the intensification of the STR which acts as a barrier for both types (high 

latitude and tropical) of systems affecting SEA In this context, while the STR has shifted south, the 

strengthening of the ridge can have a positive effect by slowing down systems with tropical origins or 

preventing them from “escaping” once connected to the fast moving mid-latitude storm-track leading to 

increased precipitation across SEA. 

These large-scale changes observed at the earth’s surface were related to upper-level changes affecting the 

MMC: Hadley cell strength and extent, and the Australian Monsoon Index. It was found across a range of 

datasets and methods (e.g. analyses of tropopause height and the relationship between the Australian 

Monsoon Index and surface climate) that the tropics are expanding. This is also apparent from the 

diagnosed MMC in all existing reanalyses. Although not very large (of the order of 0.5 degrees per decade), 

this expansion appears very robust. The signal is seasonally dependent and peaks during summer and 

autumn. This provides insight into the observed autumn rainfall deficit, as this season overlaps the  period in 

which the MMC changes peak (i.e. summer and autumn) and also the period during which the relationship 

between the STR (the surface signature of the MMC) and SEA rainfall is strongest (this relationship peaks 

during winter but starts to be significant from April).  In addition, while the large meridional circulation 

expansion in autumn drives both the intensification and shift poleward of the STR (both are most notable in 

autumn), for the reasons discussed earlier, this is only partially captured when linear statistics are used to 

reconstruct the rainfall deficit in SEA. 

One important finding was that both changes in STR-I and STR-P are related to the expansion of the Hadley 

cell. This result was anticipated for the STR-P but is a surprise for the STR-I since its correlation with the 

intensity of the Hadley cell is weak and insignificant across all reanalyses. Regarding the consistent and 

significant intensification of the STR as observed during the 20th century (in response to increases in global 

temperature), it makes sense that the STR-I is more related to the widening of the cells (which is consistently 

observed) rather than the intensity of the cells (for which there is limited evidence). 

Finally, the possibility of attributing these observed changes (global warming, widening of the Hadley 

cell/tropical expansion, strengthening of the STR, and reduction of the rainfall in SEA) was investigated using 

the CCSM3 model. Complementing results presented during SEACI-1, it was found that the model 

reproduces an extension of the Hadley cell only if the impact of human activities are incorporated either 

alone or combined with natural external factors. The widening of the Southern Hemisphere cell is a highly 

robust feature since it is produced in every single model experiment including the impact of human 

activities (10 in total). Furthermore, the model also relates the strengthening of the STR (observed in the 

model as well) to the expansion of the cell and not the intensity of the cell. The cell intensity was found to 

weaken in response to anthropogenic forcings leading to global warming, in agreement with the theory 

about the MMC, thus casting further doubt on the magnitude of the strengthening of the Hadley cell 

observed in some of the reanalyses. 
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Links to other projects 

In 2010/11, the findings on the STR–rainfall relationship that underpin our current understanding of the 

rainfall decline in SEA have been used by Project 2.1 to evaluate the reliability of climate models’ future 

projections and similarity with observed features. It is planned that the recently described sea-surface 

temperature tripole – which describes the tropical influences on rainfall in SEA – will now be used to 

evaluate climate models’ future projections as part of the same project. 

Findings from this project were also used to describe the impact of large-scale influences on the 

hydrological cycle in SEA (Project 1.2).
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CHAPTER  3: PROJECT 1.2 

Impact of climate variability and change on the water balance 

Peter Briggs, Michael Raupach, Vanessa Haverd, Kirien Whan and Matt Paget 

Abstract 

Work in Project 1.2 has delivered results in three areas. 

Develop, maintain and document the gridded hydrometeorological data flowing from the 
Australian Water Availability Project  

Release of research-quality monthly historical time series and all spatial parameter datasets, for the 

continent and a SEACI subset, along  with area-average Australian Water Availability Project (AWAP) time 

series for the 245 Australian Water Resources Council drainage basins and major drainage divisions, available 

to SEACI partners 

Improved metadata 

Successful AWAP validation against GRACE gravimetric data (independent work). 

Model statistical climate–water relationships using Australian Water Availability Project 

gridded data 

In work by Kirien Whan, correlation and regression tree (CART) and random forest analyses were used to 

classify spring hydrometeorological state for the whole of the Murray–Darling Basin (MDB) (the whole-MDB 

average rainfall and upper-layer soil moisture in September through November) against the Indo-Pacific sea-

surface temperature up to 6 months previously – with a view to determining whether sea temperature has 

predictive skill at lead times of up to 6 months. Preliminary results indicate significant predictive skill (around 

70 percent) for whole-MDB spring rainfall at lead times of up to 6 months. These skills are far higher than 

those achieved with linear models. 

Understand the relationship between hydrological drivers and responses 

This work now uses a modelling framework called CableDyn. This framework is based on AWAP but replaces 

the simple water balance model for AWAP (WaterDyn) with the model CABLE-SLI-CASACNP, developed from 

CABLE (Community Atmosphere-Biosphere-Land Exchanges), the CSIRO land-surface model developed over 

many years. Compared to WaterDyn, CABLE-SLI-CASACNP includes far more sophisticated descriptions of 

critical biological processes, such as the effect of water stress, temperature changes and CO2 changes on 

evapotranspiration. 

Without tuning, CABLE-SLI-CASACNP performs as well as or better than WaterDyn for predicting local 

discharge at annual to decadal time scales. 

In three test catchments, CABLE-SLI-CASACNP has been used to analyse the sensitivity of water balance 

responses (local discharge, transpiration, soil evaporation and wet canopy evaporation) to perturbations in 

hydrometeorological drivers. 

The sensitivity of local discharge to temperature ranges from –4 to –9 percent per oC across the three 

catchments; results are strongly dependent on the concurrent water vapour perturbation. 

Sensitivity of local discharge to precipitation is consistent with an amplification factor (proportional 

response / proportional forcing perturbation) of 3 for the wetter catchments to 8 for the drier catchments. 
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Initial results suggest that rising CO2 increases discharge by 0.5 to 2 percent per ppm CO2, the result of 

decreased stomatal conductance and hence decreased transpiration as CO2 increases. This is a significant 

effect, However, additional feedbacks associated with plant growth and structure are likely to modify this 

result, with overall consequences that are under investigation in current work. 

Background 

This project arose from the Australian Water Availability Project (AWAP), which aimed to monitor the state 

and trend of the terrestrial water balance of the Australian continent, and specifically to determine the past 

history and present state of soil moisture and all water fluxes contributing to changes in soil moisture 

(rainfall, transpiration, soil evaporation, surface runoff and deep drainage), across the entire Australian 

continent at a spatial resolution of 5 km. Past work in the AWAP has provided a 111-year (1900–present and 

ongoing) record of soil moisture and all terrestrial water fluxes over the Australian continent at 5-km spatial 

and daily temporal resolution (with monthly archiving).  

As originally framed at the outset of Phase 2 of SEACI, the focus of Project 1.2 was to (i) maintain the AWAP 

data stream, (ii) apply it to model statistical climate–water relationships, and (iii) use the AWAP framework to 

understand the relationship between climatological drivers (precipitation, temperature etc) and 

hydrological responses (runoff, evaporation etc). 

All of these lines of work have been delivered, but the priorities and modelling approaches have evolved. 

Through work by Vanessa Haverd (with support from Peter Briggs and Mike Raupach), we have now 

developed a modelling framework called CableDyn. This is based on AWAP, and uses the same driving data 

and computational infrastructure, but replaces the simple water balance model for AWAP (called WaterDyn) 

with CABLE, the land surface model developed over many years in CSIRO by numerous workers (Wang, 

Leuning, Raupach, Kowalczyk and others). CABLE describes not only energy and water exchanges but also 

carbon exchanges and carbon pool dynamics, and includes far more sophisticated descriptions of critical 

biological processes (such as the effect of water stress, temperature changes and CO2 changes on 

evapotranspiration) than WaterDyn. In the version used in CableDyn, CABLE has been greatly extended and 

improved by Vanessa Haverd to further improve and test the representations of these processes. CABLE is 

also the land surface model used in most CSIRO climate models. 

The development of CableDyn has opened a new method for investigating the third area in our workplan, 

the relationship between climatological drivers and responses. This has been our main focus in 2010/11. 

Work in the first area (maintenance of the AWAP data stream by Peter Briggs and Matt Paget) has continued 

as before, because these data are essential for (and identical with) the driving data for CableDyn. We also 

continue to operate the existing AWAP website (Matt Paget). AWAP (with WaterDyn) continues to be a 

respected and widely used modelling framework, which performs against independent benchmarks at least 

as well as other systems developed after AWAP, such as Australian Water Resources Assessment. 

Our work in the second area (application of AWAP to model statistical climate–water relationships) has 

proceeded mainly through the role of Mike Raupach in supervising PhD student Kirien Whan.  
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Objectives 

The research in Project 1.2 falls into three main categories. 

Develop, maintain and document the gridded hydrometeorological 
data flowing from the Australian Water Availability Project 

The objectives were to: 

• maintain and enhance the AWAP hydrometeorological data stream, including gridded 

meteorological data and modelled water-balance outputs 

• from the AWAP dataset, produce time series of hydrological responses (soil moisture, runoff 

components and evaporation components) and proximate drivers of relevance to the 

hydrometeorology (rainfall, solar radiation, temperatures etc) over the whole of Australia 

(including masked outputs for SEA as required elsewhere). 

Model statistical climate–water relationships using Australian Water 
Availability Project gridded data 

The objectives were to: 

• apply a general statistical model (linear with non-linear variants) to relate water balance responses 

over Australia to a set of indices that reflect the state of the climate 

• determine the parameters in the statistical model over the whole of Australia (including SEA). 

Understand the relationship between hydrological drivers and 
responses 

The objective was to: 

• apply the AWAP datasets to identify mechanisms causing hydrological responses (soil moisture, 

runoff and evaporation) to differ from hydrological drivers, thus to investigate the critical question: 

what determines the gain of the rainfall-runoff amplifier (whereby a given percentage change in 

rainfall leads to a larger percentage change in runoff)? 

Results 

Develop, maintain and document the Australian Water Availability 
Project gridded hydrometeorological data 

This year significant milestones were achieved with the update and enhancement of the principal AWAP 

data stream the development of new data products, including SEACI-specific ones, and the release of 

important new documentation. Key outputs from these activities include: 

• the public release of research-quality monthly historical time series for the continent: AWAP WaterDyn 

26M, Run 26c, incorporating the latest updates (March 2011) of Bureau of Meteorology (BoM) Version 3 

meteorology for January 1900 to February 2011. Importantly, the updated series covers the return to 

wet conditions in most of the SEACI region occasioned by the La Niña summer of 2010/11 
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• the public release of all spatial parameter datasets, with accompanying map graphics 

• a SEACI subset of the full Run 26c, including map graphics for the period January 1997 to February 2011, 

the span of the south-eastern drought. A time series of thumbnail images of the percentile ranks for 

rainfall and upper- and lower-layer soil moisture for this period are shown as Figure 26a to Figure 26c. In 

Figure 26, percentile ranks show the conditions at each location relative to the climatology of conditions 

for the same place at the same time of year during the standard period 1961 to 1990. Percentile rank 

maps give a concise visual overview of anomaly patterns, but should be interpreted with care since they 

do not show the magnitude of the quantities involved. The patterns of upper-layer (Figure 26b) and 

lower-layer (Figure 26c) soil moisture tell different stories due to the different timescales on which they 

respond to precipitation (Figure 26a). The upper-layer soil moisture responds quickly and will often have 

a pattern that reflects the rainfall and temperature events of the same or the preceding month. Lower-

layer soil moisture (Figure 26c) is a larger, deeper store that is slow to respond and tends to reflect 

accumulated events over seasonal and longer timescales. Discharge (Figure 26d) refers to the water 

available to rivers through surface runoff and deep drainage. Because deep drainage (not shown) is 

closely linked to lower-layer soil moisture, discharge shows a similar pattern of drought persistence to 

lower-layer soil moisture (Figure 26c), interrupted occasionally by wet months involving significant 

surface runoff 

• area-average AWAP time series for the 245 Australian Water Resources Council drainage basins and 

major drainage divisions, which were made available to SEACI partners and used as inputs to the 

statistical modelling (Project 2.1). Sample plots of all AWAP quantities for wet, moderate and semi-arid 

regions of the MDB (Figure 27) for the period January 1997 to February 2011 are shown in Figure 28. 

Excel and comma-delimited files of the complete time series for all basins and all quantities from 1900 

are available at the AWAP website <www.csiro.au/awap>. 

Accompanying the new data release were updates to the CSIRO AWAP web and ftp sites including: 

• thumbnail and full-size Run 26c imagery, which are now available at the website above. The most 

noticeable improvement is in the spatial structure of monthly model results in data-sparse areas, which 

now transition smoothly to denser-gauged areas due to the use of recalibrated daily rainfall (Jones et al. 

2009) supplemented in regions of interpolation failure by monthly rainfall totals disaggregated to daily 

rainfall (Briggs et al. 2011a). Water balance components in data-sparse areas are now, therefore, 

generated from quasi-realistic forcing, replacing the artefacts in the previous Run 25a data (Raupach et 

al. 2009).  

• historical data at the ftp site are now organised by individual variable to better fit the requirements of 

most users. 

Metadata documentation has been redesigned to better reflect the topics of greatest interest to users, 

including: 

CSIRO AWAP Run 26c historical monthly and annual model results for 1900-2011/02: AWAP 26c using 

improved Bureau of Meteorology AWAP Version 3 meteorological data is a concise guide to the new 

historical data, including a comprehensive FAQ about the new meteorology and its preparation for use by 

the WaterDyn and CableDyn models (including new information since Jones et al. 2009). This accompanied 

the March 2011 announcement of the 1900–2009 series and has been updated to reflect the 1900 to 

2011/02 data (Briggs et al. 2011a). The original document was reviewed by members of the Bureau of 

Meteorology AWAP team. 

Spatial soil and vegetation parameters for AWAP modelling is a set of maps with brief descriptions of the 

spatially varying parameter datasets used by AWAP WaterDyn (Briggs et al. 2011b). This package provides an 

important interpretation aid for users wishing to understand how the soil and vegetation parameters 

influence the response of the model to meteorological forcing. It supplements the spatial parameter 

description in Raupach et al. (2009). 

Version 5 of the AWAP readme file has been updated to reflect the changes associated with Run 26c. 

These documents are available though links at the Additional Information section at <www.csiro.au/awap>.  
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Updates and improvements to the BoM Version 3 data1 and the creation of Run 26c have allowed useful 

progress on the core paper for the AWAP model, primarily in the area of updated calibration-validation 

against the Vaze et al. (2011) streamflow dataset supplemented by additional catchments from Neil Viney 

(unpublished). We have also obtained updated streamflow records (early December 2010) for the Burdekin, 

Fitzroy and Murray rivers at Wentworth gauging stations to expand the scope of the flow cascade work in 

Raupach et al. (2009). 

This year we have been pleased to receive unsolicited assistance with AWAP calibration-validation courtesy 

of two independent comparisons of Run 26c soil moisture surfaces with GRACE gravimetric data by Munier 

et al. (2011, submitted) for the Canning Basin and continentally by García-García et al. (2011), who found 

‘remarkable’ agreement between GRACE, GLDAS and AWAP data in analyses linking GRACE data to Indo-

Pacific climate variability in the period 2002 to 2010. 

Evaluation of the model results shown in Figures 26-28 has been extensive, including tests summarised 

above and described in more detail in Raupach et al. (2009). 

 

                                                                    

1 Improvements since Jones et al. (2009), mainly to the Australian Data Archive for Meteorology (ADAM) 

source data for the BoM AWAP surfaces, have been documented informally by the BoM but are described in 

the Run 26c data announcement. 
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(a) Precipitation percentile ranks 

 

Figure 26. SEACI region monthly time series of (a) precipitation, (b) upper-layer soil moisture, (c) lower-layer soil 
moisture, and (d) discharge (surface runoff and deep drainage) for the period January 1997 to February 2011, 

expressed as percentile ranks 
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(b) Upper-layer relative soil moisture percentile ranks, showing a broadly similar pattern to precipitation, 
with lags evident after notably wet months. 

 

Figure 26 (cont.) SEACI region monthly time series of (a) precipitation, (b) upper-layer soil moisture, (c) lower-layer 

soil moisture, and (d) discharge (surface runoff and deep drainage) for the period January 1997 to February 2011, 

expressed as percentile ranks
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(c) Lower-layer relative soil moisture percentile ranks. The early development of the drought in the southern 

part of the SEACI region can be seen in 1997, with a persistence of drier than normal conditions in that area 

through the continentally-wet year 2000. In 2002, the drought becomes widespread, contracting to the 

south through 2008–2010, finally breaking in most areas in the wet summer of 2010–2011 

 

Figure 26 (cont.) SEACI region monthly time series of (a) precipitation, (b) upper-layer soil moisture, (c) lower-layer 
soil moisture, and (d) discharge (surface runoff and deep drainage) for the period January 1997 to February 2011, 

expressed as percentile ranks
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(d) Discharge percentile ranks. In AWAP WaterDyn, discharge is the sum of contributions to streamflow from 
surface runoff (FWRun) and deep drainage (FWLch2), and shows a similar pattern of slow evolution to lower-
layer soil moisture. Occasional departures occur when significant rain events lead to discharges with a large 

surface runoff component such as the central northern SEACI region in June 2005. This event is not observed 
in the lower layer soil moisture map for that month ( see c)  

 

Figure 26 (cont.) SEACI region monthly time series of (a) precipitation, (b) upper-layer soil moisture, (c) lower-layer 
soil moisture, and (d) discharge (surface runoff and deep drainage) for the period January 1997 to February 2011, 

expressed as percentile ranks
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Semi-Arid MDB (basin average rainfall < 460 mmy-1)
Moderate MDB (basin average rainfall < 460 to 1000 mmy-1)
Wet MDB (basin average rainfall > 1000 mmy-1)

 

Figure 27. Within the SEACI region, the Murray–Darling Basin (coloured) can be sub-divided into three regions 
based on the mean annual rainfall of the constituent basins. The green basins are broadly suited to agricultural 

activity 
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(a) Precipitation and relative soil 
moisture

0

0.2

0.4

0.6

0.8

1

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

0

0.2

0.4

0.6

0.8

1

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

0

2

4

6

8

10

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Precipitation (mm d -1)

Upper Layer Relative Soil Moisture (0 to 1)

Lower Layer Relative Soil Moisture (0 to 1)

 

Figure 28. Regionally-averaged monthly time series of water and energy balance components and meteorological 
forcings (the Australian Water Availability Project product suite), January 1997 to February 2011, for semi-arid 

(red), moderate (green), and wet (blue) sub-divisions of the Murray–Darling Basin (Figure 27). Plots of 
precipitation are repeated for ease of comparison 
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(b) Precipitation and local discharge components 
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Figure 28 (cont). Regionally-averaged monthly time series of water and energy balance components and 
meteorological forcings (the Australian Water Availability Project product suite), January 1997 to February 2011, 
for semi-arid (red), moderate (green), and wet (blue) sub-divisions of the Murray–Darling Basin (Figure 27). Plots of 

precipitation are repeated for ease of comparison 
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(c) Evaporation components and potential evaporation 
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Figure 28 (cont). Regionally-averaged monthly time series of water and energy balance components and 
meteorological forcings (the Australian Water Availability Project product suite), January 1997 to February 2011, 
for semi-arid (red), moderate (green), and wet (blue) sub-divisions of the Murray–Darling Basin (Figure 27). Plots of 

precipitation are repeated for ease of comparison 
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(d) Precipitation, energy partitioning and open water (pan) evaporation (modelled) 
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Figure 28 (cont). Regionally-averaged monthly time series of water and energy balance components and 
meteorological forcings (the Australian Water Availability Project product suite), January 1997 to February 2011, 
for semi-arid (red), moderate (green), and wet (blue) sub-divisions of the Murray–Darling Basin (Figure 27). Plots of 

precipitation are repeated for ease of comparison  
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(e) Relevant meteorological forcings (Bureau of Meteorology Australian Water Availability Project Version 3) 
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Figure 28 (cont). Regionally-averaged monthly time series of water and energy balance components and 
meteorological forcings (the Australian Water Availability Project product suite), January 1997 to February 2011, 
for semi-arid (red), moderate (green), and wet (blue) sub-divisions of the Murray–Darling Basin (Figure 27). Plots of 

precipitation are repeated for ease of comparison  



 

50 Program Annual Report 2010/11 

Model statistical climate–water relationships using Australian Water 
Availability Project gridded data 

In work by Kirien Whan, CART analyses have been used to explore the relationship between Indo-Pacific 

equatorial sea-surface temperature with upper-level soil moisture in the MDB. Both linear and non-linear 

analyses confirm that sea surface temperatures in the waters north of Australia (100 °E to 140 °E) have the 

strongest relationship with upper-layer soil moisture. 

Key outputs this year include: 

We have classified hydrometeorological state in the MDB with respect to the state of the Indo-Pacific region, 

using several hydrometeorological variables (precipitation, upper- and lower- layer soil moisture, potential 

evaporation and local discharge) in the four regular seasons. 

Predictive classification-based models for spring hydrometeorological state, based on the state of the Indo-

Pacific region in the preceding six 3-month seasons (ASO, JAS, JJA, MJJ, AMJ and MAM), were built to 

examine the predictability of spring rainfall. Preliminary results (Table 5, Table 6) indicate significant 

predictive skill (around 70 percent) for whole-MDB spring rainfall at lead times of up to 6 months. These skills 

are far higher than those achieved with linear models. 

An example of the classification tree for spring rainfall is shown in Figure 29.  This illustrates the regression 

tree and the probability density functions (PDFs) from which a break point between states and a skill score 

are determined. Following this is a discussion of the details of the predictive regression trees. 

Precipitation in spring 

During El Niño events (Southern Oscillation Index (SOI) less than –2.48; see Figure 29) the state of the sea-

surface temperature anomalies in the Indonesian Throughflow (ITF) region determines the extent and 

severity of negative precipitation anomalies across eastern Australia. This interaction between the Pacific 

(represented by the SOI) and the Indian Oceans (represented by the ITF) is important in distinguishing the 

driest years. A dry state of the MDB is related by the classification tree (Figure 29) to a negative SOI (less than 

–2.48) in conjunction with cool sea-surface temperature anomalies in the ITF less than –0.58 °C). The 

combination of El Niño with cool sea-surface temperature anomalies in the eastern Indian Ocean results in 

Terminal Node 4 (Figure 29) which has average rainfall in the MDB of 287.4 mm/year, with significant 

negative rainfall anomalies over the eastern two-thirds of the continent, with the largest anomalies along 

the Great Dividing Range and in northern Tasmania. The distribution (Figure 30) of rainfall in Terminal Node 

4 shows that there is a 90 percent chance of MDB rainfall of less than 394 mm/year when the SOI less than –

2.48 and ITF sea surface temperature less than –0.58 °C. The mean squared error of this state (terminal node 

on the tree), in conjunction with the PDF, shows that the variation of the cases around the mean is small. 

A wet state or terminal node is defined when the SOI greater than or equal to –2.48 and NINO3 sea surface 

temperature is less than –0.97 °C. Multiple splits on the same variable, in this case on measures of El Niño – 

Southern Oscillation (ENSO), suggest a linear relationship between the predictand and predictor variables. 

This is the extreme La Niña group, which combines a neutral or positive SOI with the coolest SST anomalies 

in the equatorial Pacific Ocean, and displays positive rainfall anomalies over all of eastern Australia. The 

largest anomalies are on the east coast and over the Great Dividing Range, while some negative anomalies 

are evident over western Tasmania. The distribution of Terminal Node 7 (Figure 30) shows that when the SOI 

is greater than –2.48 and NINO3 is less than –0.97 °C, there is a 73 percent chance of rainfall greater than 

619.56 mm/year in the MDB. The grouping of cases in Terminal Node 7 is more widespread, as indicated by 

the mean squared error and the PDF, due to the influence of 3 years that had low rainfall (296, 261 and 453 

mm/year). 
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Figure 29. Regression tree for precipitation in spring based on all Indo-Pacific forcings. Anomalies are calculated 
against the full record and expressed in mm/day in the composite plots.  Region C is the Indonesian Throughflow 

(ITF) region. 
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Figure 30. Probability density functions and cumulative density functions for observed MDB rainfall when the 
classification model predicts that the MDB rainfall falls into one of the four states represented by the coloured 
boxes in Figure 29.  The coloured lines  in this figure correspond to these boxes.  The black line in the top panel 
shows the probability density function for the entire observed MDB rainfall or the sum of all classified states.. 

 

Predictions of Murray–Darling Basin spring rainfall 

Regression trees were constructed that use Indo-Pacific variability in preceding months to classify MDB 

rainfall in spring which gives information about the antecedent Indo-Pacific conditions that are associated 

with dry and wet conditions in spring. The skill score of the predictive models indicates how well Indo-Pacific 

variability in preceding months predicts MDB rainfall in spring.  

The details of spring rainfall predictions of the dry terminal nodes can be seen in Table 5. Taking the 

simultaneous regression tree as an example (September through November, Table 5), it shows that if the 

September through November values of the SOI are less than –2.48 and sea surface temperature in the ITF is 

less than –0.58 °C, then there is a 90 percent chance (skill score = 0.9) that rainfall in the MDB will be less than 

394 mm/year.  This break point separates the bottom 43 percent of MDB spring rainfall. Generally it can be 

said (with a level of certainty given by the skill score) that given particular Indo-Pacific conditions in a 

preceding season, spring rainfall in the MDB will be below the break point.  
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Table 5. Skill scores and decision rules for dry terminal nodes. Mean Murray–Darling Basin rainfall for September 
through November is 451 mm/year, and median Murray–Darling Basin rainfall for September through November 

is 421 mm/year. 

Season Indo-Pacific conditions Mean 

rainfall in 

node 

(mm/year) 

Break point 

(mm/year) 

Skill 

score  

(0 – 1) 

September-

November 

rainfall 

percentile 

September-

November 

SOI < –2.48 and 

Region C < –0.58°C 

285 394 0.9 43rd  

August-

October 

SOI < –0.03 and 

Region C < –0.80°C 

264 372 1 41st 

July-

September 

NINO3 ≥ –0.73°C and 

SOI < 0.003 

354 429 0.76 52nd 

June-August NINO3 ≥ –0.58°C and 

Region C < –0.03°C 

364 412 0.67 45th 

May- 

July 

NINO3 ≥ –0.41°C and 

Region C < –0.17°C 

340 420 0.77 49th 

April- 

June 

NINO3 ≥ –0.41°C and 

NWS < –0.01°C 

355 412 0.74 45th 

March- 

May 

NINO3 ≥ 0.00°C and 

NINO3 < 0.61°C 

372 520 0.84 67th 

 

The simultaneous and August through October trees use the SOI for the first split and Region C (the 

Indonesian throughflow) as the second split. The skill scores for these terminal nodes are the highest and the 

percentiles of rainfall they predict are the lowest, showing there is high certainty for a small rainfall 

prediction. Trees built with a larger lag have NINO3 as the primary split showing that the low-frequency 

oceanic mode has greater predictability at a longer lag. The mean rainfall in these terminal nodes is larger 

(greater than 300 mm/year) and the skill scores are lower (less than 0.8). The exception is March through 

May, which classifies a dry terminal node with mean rainfall of 372 mm/year on a linear split of NINO3. While 

the skill score for this terminal node may be high (0.84), the break point determined from the PDF of rainfall 

in each terminal node is also high. As the distributions of the wet and dry terminal nodes overlap in this 

model, a large break point is selected, less than 520 mm/year, and only the bottom two-thirds (67th 

percentile) of rainfall can be determined based on the state of the Indo-Pacific region in March through May. 

The most useful season for prediction, based on the information in Table 5, is April through June. In this 

season, there is a 74 percent chance that spring rainfall will be in the bottom 45th percentile when April-

June values of NINO3 are greater than –0.41°C and the north-west shelf (NWS) is less than –0.01°C. This 

season is the most useful because it combines a large lag with high certainty and, although still large, the 

smallest percentile of rainfall. 



 

54 Program Annual Report 2010/11 

The details of the regression trees for predicting wet cases in spring can be seen in Table 6. The regression 

trees give more useful predictions of the wet terminal nodes compared to the dry node as a much smaller 

percentile of rainfall is predicted with high certainty. For example, in May through July if NINO3 is less than –

0.41°C and the Tripole Index is less than 0.01 then there is an 85 percent chance that spring rainfall in the 

MDB will be more than 737 mm/year (top 9th percentile). The simultaneous (September through November) 

and 1-month lag (August through October) predictions are based on the SOI but the second split is also 

based on ENSO (NINO3). This shows that wet conditions in these two seasons can be classified solely on 

ENSO with high skill and a high break point (which separates the top quarter of the rainfall distribution). All 

other seasons require information from both the Pacific and Indian oceans except July through September 

which only splits on NINO3; however, the skill in this season is low, suggesting that information from both 

ocean basins results in more skilful predictions. 

 

Table 6. Skill scores and decision rules for wet terminal nodes. Mean Murray–Darling Basin rainfall for September 
through November is 451 mm/year. Median Murray–Darling Basin rainfall for September through November is 

421 mm/year 

Season Indo-Pacific conditions Mean rainfall 

in node 

(mm/year) 

Break point 

(mm/year) 

Skill 

score  

(0 – 1) 

September-

October rainfall 

percentile 

September-

November 

SOI ≥ –2.48 and 

NINO3 < –0.97°C 

679 620 0.73 23rd 

August-

October 

SOI ≥ –0.03 and 

NINO3 < –0.81°C 

642 588 0.72 25th 

July-

September 

NINO3 < –0.73°C  648 651 0.53 16th 

June-August NINO3 < –0.58°C and 

TPI < 0.20 

702 641 0.72 17th 

May- 

July 

NINO3 ≤ –0.41°C and 

TPI < 0.01 

797 737 0.85 9th 

April- 

June 

NINO3 < –0.41°C and 

DMI ≥ –0.07 

618 558 0.63 27th 

March- 

May 

NINO3 < –0.00°C and 

DMI ≥ 0.14 

630 496 0.71 37th 
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Linear modelling 

In parallel work, a linear model has been applied relating a single-point water balance property w(t) (e.g. 

rainfall, soil moisture or total runoff) and a set of N lagged climate modes an(t-Ln) (e.g. ENSO, Indian Ocean 

Dipole (IOD) or STR-I): 

( )
1

( )
N

n n n
n

w t x a t L
=

= −∑
 

where xn is a set of N weights which constitute the model parameters, and Ln is the time lag corresponding 

to the maximum absolute correlation between the climate mode and the water balance property. As a test 

case, the model was applied to the Adelong catchment, using 100 years of soil moisture data provided by 

AWAP and a 100-year time series of 11 climate indices. The weights were determined using the Singular 

Value Decomposition technique, using a moving time window of 30 months on a seasonal basis. The model 

with the resulting weights was able to account for approximately 30 percent of the variance in the soil 

moisture time series. The time-varying weights showed a marked step change around 1940. This preliminary 

work raised the following questions: 

For a given catchment, which climate indices can be excluded based on the statistical significance of the 

correlation between the index and the water balance property? 

How long should the moving time window be? 

What is the origin of the step change around 1940? Is it an artefact of the meteorological input to AWAP? 

To answer these questions, the model inversion has been applied at continental scale for the 245 AWRC 

drainage basins. Sample results have been generated (e.g. Figure 31) and efforts have since moved the 

modelling platform to the R language to allow greater flexibility in the choice of statistical methods. 

Precip vs Nino3
Basin-mapped correlation matrix
Precip vs Nino3
Basin-mapped correlation matrix

 

Figure 31. Correlation of monthly precipitation time series for each of the 245 Australian Water Resources Council 
drainage basins with the Nino 3 climate index 
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Understand the relationship between hydrological drivers and 
responses 

This activity has been a key area of achievement for Project 1.2. Through work by Vanessa Haverd (with 

support from Peter Briggs and Mike Raupach), we have now developed a modelling framework called 

CableDyn. This is based on AWAP but replaces the simple water balance model for AWAP (WaterDyn) with 

the model CABLE-SLI-CASACNP, developed from CABLE. CABLE-SLI-CASACNP includes far more 

sophisticated descriptions of critical biological processes (such as the effect of water stress, temperature 

changes and CO2 changes on evapotranspiration) than WaterDyn. Key findings from this work include: 

• Without tuning, CABLE-SLI-CASACNP performs as well as or better than WaterDyn for predicting 

local discharge at annual to decadal time scales 

• In three test catchments, CABLE-SLI-CASACNP has been used to analyse the sensitivity of water 

balance responses (local discharge, transpiration, soil evaporation, wet canopy evaporation) to 

perturbations in hydrometeorological drivers 

• The sensitivity of local discharge to temperature ranges from –4 to –9 percent per °C across the 

three catchments; results are strongly dependent on the concurrent water vapour perturbation 

• Sensitivity of local discharge to precipitation is consistent with an amplification factor 

(proportional response/proportional forcing perturbation) of 3 for the wetter catchments to 8 for 

the drier catchment.  This is the "rainfall-runoff amplifier" 

• Rising CO2 increases discharge by 0.5 to 2 percent per ppm CO2, the result of decreased stomatal 

conductance and hence decreased transpiration as CO2 increases. This is a significant effect.  

However, additional feedbacks associated with plant growth and structure are likely to modify this 

result, with overall consequences that are under investigation in current work. 

Sensitivity of the water balance to meteorological drivers 

We have applied a process-based land surface model (CABLE-SLI-CASACNP) continentally at 0.05° spatial 

resolution and hourly time resolution with monthly outputs. The model prognoses the coupled fluxes and 

stores of carbon, water and energy, using the following driver data: 

• daily Bureau of Meteorology AWAP Version 3 meteorological data (downscaled to hourly 

resolution): precipitation, air temperature, solar radiation and vapour pressure 

• deseasonalised global atmospheric CO2 concentration 

• monthly woody and grassy leaf area index, derived by decomposing time series of remotely-sensed 

fraction of absorbed photosynthetically-active radiation 

• monthly fraction cover for woody vegetation. 
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As an illustration of the model output, we show in Figure 32 the total evapotranspiration rates for 1990–

2009, aggregated by season and for the whole year. 

 

Figure 32. Evapotranspiration in mm/year for four seasons December through February, March through May, 
June through August, and September through November and for the whole year. Illustrative output from the 

CABLE-SLI-CASACNP model 

 

We have selected three contrasting catchments for this study (Table 7) from the six nominally unimpaired 

catchments (Figure 33) used for AWAP parameter estimation in the upper Murrumbidgee basin (Raupach et 

al. 2009). The analysis is readily extendable to the entire continent or any region thereof. The meteorological 

drivers investigated are listed in Table 8. Sensitivities were evaluated using model runs performed with and 

without the listed perturbation for each driver. Sensitivities are reported as relative changes in flux per unit 

change in driver or as amplification factors, depending on the driver. The temperature perturbation 

necessitated a concurrent perturbation in atmospheric water vapour. This was prescribed by applying a 

perturbation to the relative humidity of –0.015 per °C, based on analysis of 1950–2010 AWAP meteorological 

data for the six Murrumbidgee catchments (Figure 33). The relative humidity and temperature data (on days 

with no precipitation) were binned by modelled evaporative fraction, and simple linear regression was used 

to estimate the slope (Figure 34). Analysis of all data together produced a slope of –0.015 per °C (R2 = 0.64). 
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Muttama Creek
at Coolac 410044

Adjungbilly Creek
at Darbalara 410038 

Tarcutta Creek at 
Old Borambola 410047

Goobarragandra River
at Lacmalac 410057

Adelong Creek
at Batlow Rd 410061 

Billabong Creek
at Aberfeldy 410097

 

Figure 33. Six nominally unimpaired catchments in the upper Murrumbidgee basin, defined as the drainage areas 
(at 0.05° grid resolution) upstream of named river gauging stations. The three italicised catchments were used 
here for sensitivity analyses. Meteorology data for all six were used to determine relative humidity–temperature 

relationships 

Table 7. Catchments used in sensitivity analysis. 

 

 Woody 

cover 

Mean annual 

precipitation 

Muttama 

Creek 

 % 1950–2010 (mm/year) 

Muttama Creek 69 1220 427 

Goobarragandra River 53 1052 290 

Adelong Creek 27 677 62 

 

 

 

Table 8. Meteorological drivers used in the sensitivity analysis 

Driver Perturbation Measure of flux sensitivity 

Temperature +1 °C  Relative change in flux per °C  

Precipitation –10% Amplification (relative change in flux/relative change in driver) 

Solar radiation –10% Amplification factor (relative change in flux/relative change in driver) 

Wind speed –10% Amplification factor (relative change in flux/relative change in driver) 

CO2 10 ppm Relative change in flux per ppm 
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Figure 34. Scatter plots of relative humidity (derived from maximum daily temperature and daily 3:00pm vapour 
pressure) versus maximum daily temperature from six Murrumbidgee catchments (Adelong Creek, 

Goobarragandra River, Muttama Creek, Billabong Creek, Adjungbilly Creek and Tarcutta Creek) for 1950–2010.  
The data from all catchments have been combined and then sorted into nine bins according to evaporative 

fraction (centred on evaporative fractions of 0.15, 0.25, … 0.95).  This bins correspond to increasing wetness as 
indicated by the evaporative fraction. Slopes pertain to linear regression lines (not plotted). The negative slopes 

quantify an empirical mean relationship between relative humidity and daily maximum temperature.  In 
sensitivity tests of hydrometeorological responses to temperature perturbations, this relationship was used to 

quantify the concurrent perturbation in atmospheric water vapour that accompanies the temperature 
perturbation 

Modelled and measured time series of annual streamflow (1955–2010) for the three catchments are shown 

in Figure 35. The model has not been tuned, yet nonetheless captures 77 to 91 percent of variance in the 

data producing linear regression slopes of 1.0 to 1.2, indicating that it is a credible tool for analysing the 

meteorological sensitivity of discharge at annual to decadal timescales. 
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Figure 35. Annual discharge (modelled and observed) for three catchments. 

 

Figure 36 shows the sensitivity of each of four water balance components (discharge (FWDis); soil 

evaporation (FWSoil); transpiration (FWTra); and wet canopy evaporation (FWwc)) to each of the five drivers 

that may influence the water balance for the three catchments. Results here are derived from long-term 

(1950–2010) mean fluxes (Note again here that sensitivities are expressed as amplification factors for 

precipitation, solar radiation and windspeed, and as relative change per °C for temperature and per ppm for 

CO2). We see that discharge is the most sensitive of all the fluxes here, and that Muttama Creek, the driest 

catchment, is generally much more sensitive than the other two. Key results for each driver are: 

• temperature 

• Sensitivity ranges from –4 to –9 percent per °C across the three catchments. 

• Results are strongly dependent on the concurrent water vapour perturbation, as indicated by the 

error bars, corresponding to the range of sensitivities corresponding to a range of (relative humidity 

verus temperature) slopes from –0.018 °C -1 to –0.012 °C -1. 

• Soil evaporation and transpiration increase with increasing temperature due to increased 

evaporative demand. 

• Wet canopy evaporation decreases with temperature due to enhanced dew formation (attributable 

to the increased slope of the saturated vapour pressure curve). 

• precipitation 
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• The amplification for discharge is around 3 for the wetter catchments but much higher at 8 for 

Muttama Creek. 

• solar radiation 

• The amplification for discharge ranges from –0.7 to –0.2 and arises from the positive amplification of 

evaporation, particularly the transpiration component. 

• wind speed 

• The amplification for discharge ranges from –0.7 to –0.2 (similar to the solar radiation case) and is 

also driven largely by the positive amplification of transpiration. 

• CO2 

• CO2 amplifies discharge by 0.5 to 2 percent per ppm CO2, which is the result of decreased stomatal 

conductance and hence decreased transpiration as CO2 increases. 

 

 

Figure 36. Sensitivity of long-term mean (1950–2010) water balance components (discharge (FWDis), soil 
evaporation (FWSoil), transpiration (FWTra), and wet canopy evaporation (FWwc)) to meteorological drivers for 

three catchments. 
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Figure 37 shows time series of the sensitivities of annual discharge to the meteorological drivers for the 

three catchments. The sensitivities are not only highly variable between catchments, but also vary 

significantly from year to year, with higher (absolute) values occurring in years of low discharge. The reasons 

for this temporal variability in sensitivity are closely related to the spatial variability in the sensitivity of mean 

discharge to rainfall, which ranges from 3 to 8 with increasing catchment dryness as noted above (Figure 36, 

upper left panel).   

 

 

Figure 37. Sensitivity of annual discharge to meteorological drivers. 
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Conclusions 

Work in Project 1.2 has delivered results in three areas. 

Develop, maintain and document the Australian Water Availability Project gridded 

hydrometeorological data  

Release of research-quality monthly historical time series and all spatial parameter datasets, for the 

continent and a SEACI subset, along with area-average AWAP time series for the 245 AWRC drainage basins 

and major drainage divisions, available to SEACI partners. 

Improved metadata. 

Successful AWAP validation against GRACE gravimetric data (independent work). 

Model statistical climate–water relationships using Australian Water Availability Project 
gridded data 

In work by Kirien Whan, CART and random forest analyses were used to classify spring whole-MDB 

hydrometeorological state (the whole-MDB average rainfall and upper-layer soil moisture in September 

through November against the Indo-Pacific sea-surface temperatures up to 6 months previously – that is, 

whether sea-surface temperatures provide predictive skill at lead times of up to 6 months. Preliminary 

results indicate significant predictive skill (around 70 percent) for whole-MDB spring rainfall at lead times of 

up to 6 months. These skills are far higher than those achieved with linear models. 

Understand the relationship between hydrological drivers and responses 

This work now uses a modelling framework called CableDyn. This framework is based on AWAP but replaces 

the simple water balance model for AWAP (WaterDyn) with the model CABLE-SLI-CASACNP, developed from 

CABLE the CSIRO land surface model developed over many years. Compared to WaterDyn, CABLE-SLI-

CASACNP includes far more sophisticated descriptions of critical biological processes, such as the effect of 

water stress, temperature changes and CO2 changes on evapotranspiration. 

Without tuning, CABLE-SLI-CASACNP performs as well as or better than WaterDyn for predicting local 

discharge at annual to decadal time scales. 

In three test catchments, CABLE-SLI-CASACNP has been used to analyse the sensitivity of water balance 

responses (local discharge, transpiration, soil evaporation and wet canopy evaporation) to perturbations in 

hydrometeorological drivers. 

The sensitivity of local discharge to temperature ranges from –4 to –9 percent per °C across the three 

catchments; results are strongly dependent on the concurrent water vapour perturbation. 

Sensitivity of local discharge to precipitation is consistent with an amplification factor (proportional 

response/proportional forcing perturbation) of 3 for the wetter catchments to 8 for the drier catchments. 

Rising CO2 increases discharge by 0.5 to 2 percent per ppm CO2, the result of decreased stomatal 

conductance and hence decreased transpiration as CO2 increases. This is a significant effect. 

Work next year will focus on the third area. 
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Links to other projects 

The Project 1.2 component Understanding the relationship between hydrological drivers and responses has 

natural linkages with Project 2.2. Significant advancement of this discussion has been somewhat dependent 

on the progress of the CableDyn model upgrade, which is now largely complete. Discussions with Project 2.2 

ensured coordination of material for this report and it is anticipated that closer collaboration in the coming 

year will assist towards resolving the question of attribution. 
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CHAPTER 4: PROJECT 2.1 

Climate change projections 

Dewi Kirono, Jin Teng, David Kent, Francis Chiew, Marie Ekstrom and David Post (CSIRO) 

Bertrand Timbal and Yang Wang (BoM) 

Abstract 

The research in Project 2.1 builds on results from Phase 1 of SEACI to improve global climate model 

assessment and selection for hydrological applications and to investigate and account for the relative 

uncertainties in the different components for modelling the impact of climate change on runoff. 

There were two activities in 2010/11. Activity 1: (i) assessed the ability of the global climate models from the 

Intergovernmental Panel on Climate Change Fourth Assessment Report to represent a range of selected 

climate variables and large-scale climate drivers using a consistent approach so that the results can be 

compared; (ii) developed a selection framework to identify ‘better’ performing models that can potentially 

be used for downscaling modelling to obtain future climate series suitable to drive hydrological models; and 

(iii) explored the implications of weighting and/or selecting models for future rainfall projections for SEA. 

Research in Activity 1 showed that: 

• According to the M-statistic of Watterson (2009) skill-score: (i) all 24 global climate models can 

reasonably represent the spatial distribution of the mean and coefficient of variations of examined 

climate variables (mean sea level pressure, rainfall, temperature and potential evapotranspiration, 

but the models are not as goods in representing the spatial distribution of the trend; (ii) some 

models are consistently good across all examined large-scale climate drivers and rainfall inter-

annual variability, but many models are not. 

• Based on the initial assessment results and the framework developed here, the following eight 

selected models can be considered as the ‘better’ performing ones and may be used for future 

downscaling modelling: 

o first selection: CSIRO-MK3.0, MIROC3.2-medres 

o second selection: CGCM-T47, CSIRO-MK3.5, IPSL-CM4, INM-CM3.0, MRI-CGCM2.3, CNRM-

CM3. 

• The annual rainfall projections for the weighted global climate models (based on the M-statistic of 

rainfall) are relatively similar to the median projections of the unweighted 24 models. However, the 

median annual rainfall projections from the eight selected models are drier than the median of all 

24 models. The range (10th to 90th percentile) of the annual rainfall projections from the eight 

selected models is no smaller than that from all 24 models. For winter and spring, however, the 

range of uncertainty from the eight selected models is smaller than that from all 24 models. 

• Activity 2 assessed the relative merits of different downscaling methods and the relative 

uncertainties of various components in modelling the impact of climate change on runoff. Three 

components that were examined were global climate model projections, downscaling methods and 

hydrological modelling. In 2010/11: 

• Initial steps were taken to set up the Weather Research Forecasting (WRF) system as a dynamical 

downscaling tool to complement existing downscaling methodologies within SEACI. Since the 

system has multiple options for the physics parameterisations, it is necessary to choose between 

many of these parameterisations. A 36-member physics parameter ensemble (PPE) was 
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investigated, and two members of the ensemble were identified as better performers for future 

downscaling work. 

• Analyses of hydrological modelling suggested that at least 10 years of streamflow data are needed 

for the model calibration to represent hydroclimate variability adequately, and that calibrating 

hydrological models against the more recent data gives better streamflow predictions. 

• Analyses on the use of the perturbation downscaling method (a combination of pattern and daily 

scaling methods) showed that it should be used cautiously for global warming scenarios higher 

than 2.0 °C (in its current derivation). The assessment showed that the analogue method 

underestimates rainfall and therefore the modelled runoff. The use of an inflation factor to scale all 

the daily rainfalls to match the observed 1961-2000 seasonal means (‘match-mean’) produced 

rainfall and modelled runoff that are similar to the observed annual means. However, there are 

differences in the daily analogue and observed rainfall distribution, sufficient to result in modelled 

daily and mean runoffs that are different to the values modelled using observed rainfall. The range 

in the modelled change in future runoff (for the period 2046-2065 relative to 1960-2000) modelled 

using rainfall from the analogue downscaling informed by the 11 global climate models (i.e. 

CGCM3.1(T47), CNRM-CM3, CSIRO-MK3.0, CSIRO-MK3.5, GFDL-CM2.0, GFDL-CM2.1, GISS-ER, IPSL-

CM4, MIROC3.2-medres, MPI-ECHAM5, MRI-CGCM2.3.2) (after applying ‘match-mean’ inflation 

factor) is smaller than the range of modelled runoff using rainfall from the daily scaling perturbation 

method. It appears that the analogue method moderates the climate-change impact on rainfall and 

runoff results, and this issue needs to be investigated further, particularly when the large-scale 

rainfall is often the major predictor in the analogue method. The analogue method can be useful for 

hydrological-impact studies over large regions. However, more research is required for the 

analogue method and the necessary corrections to produce daily rainfalls that are sufficiently 

similar to the observed daily rainfall for direct use in hydrological models. In climate change impact 

simulations informed by global climate models, there is also a need to improve the bias correction 

of predictor variables from the models. 

Background 

The main goal of the research in Theme 2 is to improve hydroclimate projections for SEA. The research in 

Theme 2 is at the climate–water interface, and its link to climate science and hydrological modelling science 

is shown schematically in Figure 38. 

Hydrological models are generally tailored for specific applications, and are developed and calibrated using 

local data. There are two main steps involved in estimating the impact of climate on future runoff 

characteristics and water availability. The first step uses global climate model projections and downscaling 

models to obtain future catchment-scale climate series to drive hydrological models. Project 2.1 carries out 

research in this area. The second step involves driving hydrological models with future climate series to 

estimate future runoff. This may require adapting models to account for changes in the rainfall–

temperature–runoff relationship and changes in the dominant hydrological processes in a drier, warmer 

environment with higher levels of carbon dioxide (CO2). Project 2.2 carries out research in this area. Both 

projects in Theme 2 are closely related to – and use information from – the projects in Theme 1. 

The research in Project 2.1 builds on results from Phase 1 of SEACI to improve the assessment and selection 

of global climate models for hydrological applications and to investigate and account for the relative 

uncertainties in the different components for modelling the impact of climate change on runoff. This will 

lead to more reliable and updated future catchment-scale climate series to drive hydrological models in 

climate change impact studies. 
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Figure 38. Schematic representation of the approach to modelling the impact of climate change on runoff. 

Objectives 

Assessment of global climate models and the implications for 
rainfall projections in the SEACI region 
Assess the ability of global climate models of the Intergovernmental Panel on Climate Change Fourth 

Assessment Report to reproduce observed climate variables and important atmospheric–oceanic drivers of 

rainfall in SEA (as identified in Theme 1). Explore the implications of weighting and/or selecting global 

climate models in rainfall projections. 

Investigation of uncertainty in climate–water projections 
Assess the relative uncertainties in the three main components in modelling the impact of climate change 

on future runoff, namely global climate model projections, downscaling methods and hydrological 

modelling. 
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Methods 

Assessment of global climate models and the implications for 
rainfall projections in the SEACI region 

Twenty-four global climate models in the IPCC database were assessed. Researchers examined the ability of 

these models to reproduce observed seasonal climate variables and important atmospheric–oceanic drivers 

of rainfall in SEA (as identified in Theme 1). 

• The climate variables that were examined included mean sea-level pressure, air temperature, 

rainfall, and estimated potential evapotranspiration. The sea-level pressure was assessed over 

Australia, while the other variables were each assessed over the Murray–Darling Basin and over 

each of the three climate regions within the SEACI region as defined in Timbal and Fernandez 

(2009), i.e. the northern Murray–Darling Basin, eastern sea-board and south-west of eastern 

Australia. The ability of each model to represent the spatial pattern of observed monthly, seasonal 

and annual mean of climatology, coefficient of variability and long-term trend was quantified using 

the M-statistic of Watterson (2008) for three different periods (1961–1990, 1975–2004 and 1996–

2007) for mean sea-level pressure, air temperature, and potential evapotranspiration, and for four 

different periods for rainfall (1900–2000, 1961–1990, 1975–2004 and 1996–2007). As a result, for 

rainfall as an example, there are 816 metrics of assessment (four regions, 17 temporal scales, three 

characteristics and four time periods) for each of the global models. All the results are available for 

researchers who wish to select/weight GCMs using their preferred considerations and/or 

thresholds. 

• Inter-annual rainfall variability is a characteristic that is important for hydrological impact studies. 

The representation of this characteristic was assessed by comparing the areal monthly mean of 

modelled SEA rainfall to the observed rainfall. The extent of the SEA region follows that used by 

Timbal (2010). Researchers assessed the ability of each model in representing the inter-annual 

variability with respect to the mean, coefficient of variability and extremes (10th and 90th percentile), 

as quantified by the correlation coefficient between the model and the observations.  

• One of the atmospheric–oceanic characteristics that was assessed in detail is the sub-tropical ridge 

(STR). The STR is one of the key drivers of rainfall in SEA (Drosdowksy, 2005, Timbal et al., 2010). The 

mean state and variability of STR-I and STR-P was diagnosed and compared to observations, and the 

best-performing global climate models were identified using four tests. The methods are discussed 

in detail in Kent et al. (2011). Current research is assessing the ability of models to represent other 

drivers (El Niño – Southern Oscillation, Indian Ocean Dipole and Southern Annular Mode) and their 

teleconnections with rainfall in SEA; this work is expected to be finished in the next year. In 2010/11, 

an independent study by Irving et al. (2010) assessed the ability of global models to represent ENSO 

in the context of climate projections over the Pacific region. In addition, Fredericksen et al. (2011) 

assessed their ability to represent the changes in the Southern Hemisphere weather system in the 

context of attribution studies of rainfall changes over southern Australia. Results from these two 

independent studies have been synthesised to complement results from this project. 

• In this project, researchers then developed a framework to identify ‘better’ performing global 

models that may be used for downscaling modelling (second activity). The first step was to test 

applicability, i.e. to check whether the global climate models provides daily data required by the 

daily scaling and analogue downscaling techniques that are applied in Activity 2. The second step 

was to test reliability based on the results of the above assessment:  

• The global model was considered to represent climate variables well if its multi-metric mean of M-

statistic is greater than 0.5 for each of the climate variables (sea-level pressure, air temperature, 

rainfall, and estimated potential evapotranspiration. 
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• The global model was considered to have a good representation of:  

o STR if it passes three out of four tests as described in Kent et al. (2011) 

o ENSO if it is within the top 75 percent among the 24 global climate models as described in 

Irving et al. (2010) 

o changes in the Southern Hemisphere weather system if it is strongly correlated to observed 

changes (defined as having a correlation coefficient greater than 0.5) in baroclinic 

instability and Phillips criterion as described in Fredericksen et al. (2011). 

• The global model was considered to represent inter-annual variability well if it has positive 

significant correlation coefficient with the observed monthly climatology, coefficient of variability 

and extremes (10th to 90th percentiles). 

The final step was to select the global climate models that pass three to four of the above five tests (i.e. 

climate variables, STR, ENSO, changes in Southern Hemisphere weather system and inter-annual rainfall 

variability). This threshold was chosen arbitrarily, but to ensure an adequate number (i.e. more than one) 

model was selected. This framework has been defined for the needs of this project; other researchers may 

wish to select models differently but still use the quantitative assessment results from this project. More 

detailed description of this framework is available in Kirono et al (2011). It is worth noting that the 

requirement for models to have the required data for Analogue downscaling techniques and to have 

potential evapotranspiration data may lead to a number of good GCMs being eliminated by the selection 

process. The researchers therefore also identified models that have the potential to be used in the future but 

which currently do not have the required data (as depicted in Table 9). 

Investigation of uncertainty in climate–water projections 

Using limited data in 2009/10, research in Project 2.1 suggested that: (i) the largest uncertainty in projecting 

future water availability comes from global climate model projections; (ii) the variability in simulations using 

different downscaling methods is about half the range of variability associated with future projections from 

the different global models; and (iii) the variability in runoff simulations using different lumped conceptual 

rainfall-runoff models is small compared to that associated with the global climate model projections and 

downscaling methods (Chiew et al., 2010; Teng et al., 2011a). The research in Project 2.1.-Activity 1 is focused 

on improving the interpretation of model projections, which is likely to reduce the range of global model 

projections used for modelling of the impact of climate change on future runoff. However, the uncertainty in 

the hydrological modelling is likely to be higher when non-stationarity in dominant hydroclimate processes 

is accounted for. This is largely investigated in Project 2.2. In addition, researchers investigated whether 

hydrological models should be calibrated using more recent data or using long historical records to account 

for decadal hydroclimate variability and a changing climate. 

Building on previous research and working closely with Activity 1 and Project 2.2, the focus for Activity 2 in 

2010/11 was to better understand and quantify the uncertainties associated with the different downscaling 

methods. The runoff projections obtained from different downscaling methods were compared: (i) to assess 

the suitability of these methods for hydroclimate projections across SEA; and (ii) to investigate the 

uncertainty sourced from downscaling methods. These results – in combination with those from the first 

activity and Project 2.2 – will lead to updated and improved projections of future runoff across SEA. 

Initially, the hydroclimate projections were generated using global climate model rainfall downscaled to 

0.05° grids using the perturbation method (a combination of pattern and daily scaling methods). The 114 

years of daily future runoff projections were generated for four global warming scenarios: 

• 1.0 °C and 1.3 °C, which represent median and high global warming scenarios for 2030, respectively 

• 2.0 °C and 3.3 °C, which represent median and high global warming scenarios for 2060, respectively. 

An analogue downscaling method developed by the Australian Bureau of Meteorology was also assessed for 

its suitability in studying the impact of climate change on runoff over very large regions. The analogue 

model defines a daily weather type by relating large-scale atmospheric predictors to observed rainfall. This 
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method has been used to successfully downscale point and gridded rainfall across Australia and to study 

rainfall trends across south-east and south-west Australia. Using this analogue method, three time slices of 

global climate model daily rainfall – one historical (1961–2000) and two future (2046–2065, 2081–2100) – 

were downscaled from 11 models to 0.05° (~5 km) grid cells to cover SEA. The downscaled gridded rainfall 

was used to drive two widely used hydrological models (Sacramento (Burnash et al., 1973) and SIMHYD 

(Chiew et al., 2002)) and results were compared with the runoff modelled using observed and pattern scaled 

rainfall. 

To complement existing downscaling methods within SEACI, initial steps were taken in 2010/11 to set up the 

WRF system as a dynamical downscaling tool. Researchers investigated which options for key physics 

parameter schemes (e.g. planetary boundary scheme, cumulus scheme, micro-physics scheme and radiation 

scheme) perform optimally in terms of capturing observed rainfall, temperature and mass-field for SEA. A 36-

member  PPE was run for four case studies representing four different rainfall events, each centred in a 2-

week window. Experiments were delayed due to a model version upgrade which warranted a complete re-

run of experiments with the new version. Metrics based on mean sea-level pressure, minimum surface 

temperature, maximum surface temperature, rainfall and wind speed were used to identify the ensemble 

member with the best performance across the four case studies. Four different ranking methodologies were 

used to reflect different priorities when ranking the data. 

Results 

Assessment of global climate models and the implications for 
rainfall projections in the SEACI region 

Figure 39 shows the observed and modelled spatial distribution of annual rainfall and potential 

evapotranspiration (only for the global climate models which have evapotranspiration data). Some models 

can reproduce the spatial distribution of the mean annual rainfall, and some models tend to be much drier 

or wetter than the observations. Some models can reproduce the spatial pattern of the annual coefficient of 

variability, although these models tend to underestimate the observed values. The observed linear trends 

are not very well reproduced by most models. All of these comments also apply to potential 

evapotranspiration. The ability of each model to represent the spatial distribution of each variable was 

quantified using the M-statistic of Watterson (2008) as summarised in Figure 40. Therefore, the M-statistic for 

each of the assessment metrics, for each climate variable, for each of the 24 global models are available and 

multi-metrics-mean of M-statistic for each of the climate variables are summarised in Table 9. Some findings 

include the following: 

• As shown in Figure 40  and Figure 41, overall all 24 global climate models represent climate 

variables well over the MDB. Mean climatology is best represented and long-term trend is least well 

represented. This finding also applies for all other regions (e.g. the eastern sea-board) (not shown 

here). 

• For the mean and the coefficient of variability, ranges of the M-statistic are similar regardless of the 

time period (Figure 41). For the rainfall trend, the global models represent the rainfall trend in the 

recent period (1996–2007) better than in the other periods. This is in regard not only to the MDB (as 

shown in Figure 41) but also for other regions (not shown here). 

• For rainfall, the M-statistics for the MDB have a strong positive correlation to those for other regions 

(northern Murray–Darling Basin, eastern sea-board and south-west of eastern Australia; not shown 

here) suggesting that assessment over the MDB is representative of assessments over different 

climate regions within the SEACI region. 

With regard to the inter-annual rainfall variability, Figure 42 shows the observed and modelled values for 

monthly mean, coefficient of variability and extremes (10th to 90th percentiles) over the SEA region. 

Qualitatively, this Figure suggests that some models can reproduce the inter-annual pattern of those three 
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characteristics but some models cannot. Quantitatively, Table 9 (coloumn 5-8) shows the correlation 

coefficient (R) between the model and the observations. Some models (e.g. CNRM-CM3 and ECHAM) 

perform consistently well (with R of > 0.6) while others (e.g. GFDL-CM2.1 and NCAR-PCM) do not perform 

consistently well (suggested by its positive and negative R) across all inter-annual characteristics that were 

examined. 

In terms of climate drivers, some models consistently pass the test (therefore are good) across all the 

examined climate drivers but many models are not (Table 9). The former include CSIRO-MK3.0, MIROC3.2-

medres, CSIRO-MK3.5, MIROC3.2-hires, NCAR-CCSM and ECHAM-MPI (see also Table 10). If we were to apply 

the selection framework described previously, the global climate models that may be considered for further 

downscaling modelling (in Activity 2) are as listed in Table 10. 

Figure 43 shows projected changes in annual rainfall per degree of global warming based on different sets 

of experiments: all 24 global climate models (unweighted), all 24 models (weighted by the rainfall M-statistic 

summarised in Table 10) and eight selected models (listed under ‘First selection’ and ‘Secondary selection’ in 

Table 10). This figure shows that: 

• The median projections suggest decreasing rainfall over most of the region, regardless of the set of 

experiments. 

• The annual rainfall projections from the weighted models are relatively similar to the median 

projections from the unweighted 24 models, except in the north-east where the weighted models 

suggest a decrease in rainfall and in the north-west where the weighted models suggest a lesser 

degree of drying. 

• The median annual rainfall projections from the eight selected models are drier than the median of 

all 24 models (unweighted). The range (10th to 90th percentile) of the annual rainfall projections from 

the eight selected models is no smaller than that from all 24 models. This is also the case for 

summer and autumn rainfall projections. For winter and spring, however, the projection from the 

eight selected models is drier (with smaller uncertainty) than that from all 24 models (not shown 

here). However, for the 10th percentile range, the selected models suggest a larger degree of drying 

in comparison to the all 24 models. 
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Figure 39. Spatial distribution of observed and modelled statistics of annual rainfall and potential 
evapotranspiration (PET) for 1951–2006. Each of these spatial distributions has been quantitatively assessed using 

the M-statistic of Watterson (2008) 

 

 



 

Chapter 4:  Project 2.1 73 

 

Figure 40. Overall performance, represented by the M-statistic of Watterson (2008), of 24 global climate models for 
annual temperature and annual rainfall measures over the Murray–Darling Basin. Results are indicated as box 

plots showing the median and 10th to 90th percentile of 24 models 

 

Figure 41. Overall performance, represented by the M-statistic of Watterson (2008), of all 24 global climate models 
for annual rainfall measures over the Murray–Darling Basin for different periods. Results are indicated as box plots 

showing the median and 10th to 90th percentile of 24 models 
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Figure 42. Observed and modelled inter-annual variability of rainfall characteristics (mean, coefficient of 
variability and extremes) in south-eastern Australia 
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Table 10. Selected global climate models, based on the selection framework developed here, that can be 
considered in future downscaling modelling in SEACI. Definition of a ‘good’ model is described in either the 

‘Method’ section, in Table 9 or in Kirono et al. (2011). 

Global climate model Climate 

variables 

Climate characteristics Inter-

annual 

rainfall 

variability 

  STR ENSO SH  

First selection 

CSIRO-MK3.0 Good Good Good Good Good 

MIROC3.2-medres Good Good Good Good Good 

Secondary selection    

CGCM-T47 Good Poor Good Good Good 

CSIRO-MK3.5 Good Good Good Good Poor 

IPSL-CM4 Good Poor Good Good Good 

INM-CM3.0 Good Good Poor Poor Good 

MRI-CGCM2.3 Good Good Good Poor Poor 

CNRM-CM3 Good Poor Good Poor Good 

Has potential 

MIROC3.2.-Hires 

(No analogue data) 

Good Good Good Good Good 

NCAR-CCSM 

(No analogue data) 

Good Good Good Good Good 

GFDL-CM2.0 (No PET) Good Good Good Poor Good 

ECHAM-MPI (No PET) Good Good Good Good Poor 

NCAR-PCM (No PET) Good Good Good Poor Good 

UKMO-HadCM3 (No PET) Good Good Good Poor Good 

GFDL-CM2.1 (No PET) Good Poor Good Poor Good 
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Figure 43. Spatial distribution of percentage changes in annual rainfall per degree global warming based on 
different sets of experiments: all 24 global climate models (unweighted), all 24 global climate models (weighted by 

the rainfall M-statistic summarised in Table 9), and eight selected global climate models (listed under ‘First 
selection’ and ‘Secondary selection’ in Table 10) 

Investigation of uncertainty in climate–water projections 

More detailed results from the WRF downscaling modelling can be found in Evans et al. (2011) and the 

summary showed that: 

• Differences between the members of the PPE are much smaller for relatively weak weather systems 

than for strong or extreme weather systems 

• No single member of the PPE performed best for all cases, all variables and all metrics, although 

some options clearly performed better than others when considering individual metrics 

• Using the four ranking systems, two ensemble members could be identified as better performers in 

comparison to the total PPE. However, a possibly more robust way of using the rankings is to 

identify those combinations that should be avoided 

Results from the investigation of uncertainty in hydrological modelling and downscaling methods include 

the following: 

• At least 10 years of streamflow data are needed for the model calibration to represent hydroclimate 

variability adequately. The results also show that calibrating hydrological models against more 

recent data gives better streamflow predictions (Teng et al., 2011b). These modelling protocols lead 

to improved understanding of the modelled response of streamflow to climatic conditions. 

• Results from analysing the runoff projections derived for the four global warming scenarios show 

that the perturbation method should be used cautiously for global warming scenarios higher than 

2.0 °C. This is because the pattern scaling factors were obtained from SRES A1B global climate 
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model experiments up to 2100, with a simulated global-average temperature rise of less than 2.0 °C. 

Using this method for global warming greater than 2.0 °C extrapolates the pattern scaling 

regression outside the range of actual data and the confidence in the results are therefore lower. 

The vast majority of changes in runoff in response to increases in global average temperature are 

reasonably linear. However, small projected changes in rainfall may result in non-linear changes in 

runoff when global average temperature increases, particularly when rainfall increases in one 

season but decreases in another. At larger spatial scales, when averaging across a number of 

climate-model grid cells, differences in response between different grid cells mean that the overall 

regional runoff response to increases in global average temperature can be non-linear. The 

implications are that regional-scale analyses of changes in runoff due to climate change require 

rainfall-runoff models to be run for each projected increase in global average temperature and 

simple linear approximations can only be used with prior knowledge of the nature of the 

relationship (Post et al., 2011). 

• The analogue downscaling method underestimates the variance and mean in rainfall. This 

underestimation is amplified in runoff. Maps in Figure 44 show that the historical runoff modelled 

using the rainfall downscaled from 11 global climate models is underestimated across the whole 

region for every model. 

• A correction factor was applied to every 0.05° grid cell to improve the variance of rainfall (‘variance-

corrected’). However, the factor is not able to correct the mean seasonal rainfall and therefore the 

runoff is still underestimated. Figure 45 shows the comparison of summer (DJF) and winter (JJA) 

rainfall and runoff distributions for one grid cell (in Melbourne). The analogue rainfall was 

downscaled using NCEP/NCAR re-analysis datasets which were used in developing and validating 

the analogue method. 

• Another set of correction factors was applied to force the analogue seasonal mean rainfall to match 

the observed values (‘match mean’). The result for the same grid cell in Melbourne shows that the 

modelled runoff is overestimated (Figure 45). Table 11 summarises the mean annual and seasonal 

runoff averaged across the whole region modelled from observed rainfall and analogue rainfall with 

different inflation factors. The mean annual runoff, and to a lesser extent mean seasonal runoff, 

across the whole region is in agreement with the runoff modelled using observed rainfall (Figure 46, 

Table 11). However, the extreme high daily runoff (Q1, shown as daily runoff that is exceeded 1 

percent of the time) and low-flow characteristic (low-flow days, shown as number of days per year 

when runoff is less than 0.1 mm) are not well captured using this downscaling method. 

• The range in the modelled change in future runoff (for the period 2046-2065 relative to 1960-2000) 

modelled using rainfall from the analogue downscaling informed by the 11 global climate models 

(after applying ‘match-mean’ inflation factor) is somewhat smaller than the range of in modelled 

runoff using rainfall from the daily scaling perturbation method (Figure 47). It appears that the 

analogue method moderates the climate change impact on rainfall and runoff results and this issue 

needs to be investigated further, particularly when the large-scale rainfall is often the major 

predictor in the analogue method. 
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Figure 44. Spatial distribution of mean annual runoff modelled using observed rainfall (Australian Water 
Availability Project) and rainfall downscaled using the analogue method from 11 global climate models 
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Figure 45. Plots showing rainfall and runoff distributions for one grid cell (in Melbourne) from observed, analogue 
downscaling, analogue downscaling with an inflation factor to improve the variance, and analogue downscaling 
with inflation factor to match the seasonal means. The seasonal mean rainfall and runoff are shown in the legend 

in each plot 
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Table 11. Mean annual and seasonal runoff averaged across the whole region modelled using different rainfall 
inputs 

Method Annual December-

February 

March-

April 

June-

August 

September-

November 

AWAP 50.0 9.9 12.8 17.0 10.3 

NNR ’variance-corrected’ 38.4 7.4 9.4 13.7 7.8 

NNR ’match mean’ 51.8 10.1 12.4 18.3 10.9 

 

Figure 46. Scatter plots comparing runoff as represented by the Australian Water Availability Program and 
modelled using the analogue downscaling method for rainfall estimation with inflation factors (with regard to 

mean) for major runoff characteristics 

 

Figure 47. Change in future mean annual runoff for the period 2046-2065 relative to 1960-2000 as modelled using 
daily scaling and analogue downscaling methods informed by 11 global climate models 
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Conclusions 

The research in Project 2.1 builds on results from Phase 1 of SEACI to improve the assessment of global 

climate models and selection for hydrological applications, and to investigate and account for the relative 

uncertainties in the different components for modelling the impact of climate change on runoff. This will 

lead to more reliable and updated future catchment-scale climate series to drive hydrological models in 

climate change impact studies, and will result in a reduction of associated uncertainties. 

There were two activities in 2010/11. Activity 1 assessed the representation of the climate variables and 

large-scale drivers in GCMs from the IPCC AR4 and the implications for future rainfall projections for SEA. The 

study showed that:  

• All 24 global climate models can generally represent the spatial pattern of climate variables (rainfall, 

temperature, potential evapotranspiration and mean sea level pressure). Some models are 

consistently good in representing all examined large-scale climate states and rainfall inter-annual 

variability, but many models are not. 

• For future downscaling modelling, the following models are recommended: 

o ‘first selection’: CSIRO-MK3.0, MIROC3.2-medres 

o ‘second selection’: CGCM-T47, CSIRO-MK3.5, IPSL-CM4, INM-CM3.0, MRI-CGCM2.3, CNRM-

CM3. 

• When the skill scores on rainfall performance were used to weight each of global climate models 

the annual rainfall projections from the weighted models are relatively similar to the median 

projections from the unweighted 24 models. However, the median annual rainfall projections from 

the eight selected models are drier than the median of all 24 models. The range (10th to 90th 

percentile) of the annual rainfall projections from the eight selected models is no smaller than that 

of all 24 models. For winter and spring, however, the range of uncertainty from the eight selected 

models is smaller than that from all 24 models. This framework has been defined for the needs of 

this project; other researchers may wish to use a different approach in the selection of global 

climate models but still use the quantitative assessment results from this project. 

The second activity assessed the relative merits of different downscaling methods and relative uncertainties 

of the three main components in estimating the impact of climate change on runoff (global climate models 

projections, downscaling methods and hydrological modelling). In 2010/11: 

• A 36-member PPE was investigated, and two ensemble members were identified as better 

performers for future WRF downscaling work. 

• At least 10 years of streamflow data were shown to be needed for the calibration of hydrological 

models to represent hydroclimate variability adequately. Calibrating hydrological models against 

more recent data gives better streamflow predictions. 

• Analyses on the use of the perturbation downscaling method (a combination of pattern and daily 

scaling methods) showed that it should be used cautiously for global warming scenarios higher 

than 2.0 °C (in its current derivation). 

• Historical and future climate series based on daily scaling and analogue downscaling methods have 

been completed (11 global climate models for 1960–2000, 2046–2065 and 2081–2100). Historical 

and future runoff series have also been derived using the Sacramento rainfall-runoff model with 

climate input from the analogue downscaling technique. The assessment showed that the 

analogue method underestimates rainfall and therefore the modelled runoff. The use of an inflation 

factor to scale all the daily rainfalls to match the observed 1961-2000 seasonal means (‘match-

mean’) produced rainfall and modelled runoff that are similar to the observed annual means. 

However, there are differences in the daily analogue and observed rainfall distribution, sufficient to 

result in modelled daily and mean runoffs that are different to the values modelled using observed 
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rainfall. The range in the change in future runoff (for the period 2046-2065 relative to 1960-2000) 

modelled using rainfall from the analogue downscaling informed by the 11 global models (after 

applying ‘match-mean’ inflation factor) is somewhat smaller than the range of modelled runoff 

using rainfall from the daily scaling perturbation method. It appears that the analogue method 

moderates the climate change impact on rainfall and runoff results and this issue needs to be 

investigated further, particularly given that the large-scale rainfall is often the major predictor in the 

analogue method. The analogue method can be useful for hydrological impact studies over large 

regions. However, more research is required for the analogue method and the necessary corrections 

to produce daily rainfall estimates that are sufficiently similar to the observed daily rainfall for direct 

use in hydrological models. In climate change impact simulations informed by global climate 

models, there is also a need to improve the bias correction of predictor variables from the models. 

Links to other projects 

Project 2.1 is strongly linked to Theme 1 and Project 2.2. The global climate model assessment and selection 

is carried out in the context of the major drivers for rainfall in SEA identified in Theme 1 and the hydrological 

modelling in Project 2.2. The more accurate and updated future catchment-scale climate series (and 

associated uncertainties) from Project 2.1 will be used to drive the hydrological models in Project 2.2 and 

elsewhere to improve prediction of climate change impact on future runoff. 
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CHAPTER 5: PROJECT 2.2 

Hydroclimate impacts for south-eastern Australia 

Cuan Petheram, Nick Potter and Lu Zhang 

Abstract 

The research in Project 2.2 builds on results from Phase 1 of SEACI to enhance knowledge of climate–water 

processes in a changing climate, and to use this to improve models for predicting the impact of climate 

change on water availability. 

There were two activities in Project 2.2 in 2010/11. Activity 1 undertook an empirical analysis on 34 

unimpaired catchments in SEA that had more than 40 years of available data and less than 1 month of 

missing data during the recent drought (1997-2008). The median year of streamflow commencement was 

1946. The first component of the first activity examined changes in the relationship between rainfall, 

temperature and streamflow and the sensitivity of streamflow to rainfall and temperature. 

Firstly, regression analysis was used to test whether the annual rainfall–streamflow relationship during the 

drought was statistically different from the pre-drought rainfall–streamflow relationship. It was found that 

22 catchments had significantly different rainfall–streamflow relationships during the recent drought 

compared to the pre-drought time period. Out of the 34 catchments, 18 were found to have significantly 

different rainfall – maximum temperature relationships during the recent drought compared to the pre-

drought time period. However, the spatial coherence between these was fairly low, suggesting that while 

increased temperatures did play a role in reducing streamflow during the recent drought, other subsidiary 

features of the recent drought were also important. 

We then estimated the sensitivity of annual streamflow to annual rainfall and daily maximum temperature 

using a multiple regression approach. The calculated streamflow sensitivities (multiplication factors) to 

rainfall mostly lie within the range of about 1.5 to 3.5, i.e. a 10 percent decrease in rainfall leads to a 15 to 35 

percent decrease in streamflow. The mean of all of the statistically significant streamflow sensitivities to 

maximum temperature is −0.186, i.e. a 1 degree increase in daily maximum temperature leads to a 1.86 

percent decrease in streamflow. However, larger (i.e. more negative) sensitivities were seen in catchments 

with smaller increases in maximum temperature during the drought. In those catchments with average 

maximum temperature anomalies during the drought greater than 0.6 ºC, the average sensitivity to 

temperature was somewhat smaller at −0.116. 

Multiplying the sensitivity factors by the observed rainfall and maximum temperature anomalies for each 

catchment yields a proportional break-up of the observed streamflow reduction. Averaged over all 

catchments, weighted by the catchment area, we estimated that of the average 46 percent reduction in 

streamflow observed across the catchments, 65 percent was accounted for by reduction in annual rainfall 

during the recent drought, 7 percent was accounted for by increased annually averaged daily maximum 

temperature, and 28 percent was unexplained. 

The second component of the Activity 1used traditional hydrological empirical techniques to investigate 

which components of the catchment water balance may have changed during the drought. During the 

drought a statistically significant change (reduction) in daily rainfall occurred between the 10th and 40th 

percentiles. Very high daily rainfall percentiles (i.e. 1st percentile) during drought were not found to be 

statistically different from those prior to the drought. However, about 80 percent of the catchments in the 

southern half of the SEACI region exhibited a statistically significant difference (reduction) in the 1st 
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percentile of daily runoff. One explanation may be that in small catchments, a statistically significant 

reduction in very high runoff percentiles (1st percentile) during the drought without a corresponding 

reduction in very high daily rainfall percentiles (less than 1st percentile) may be evidence for a deepening of 

the unsaturated zone and more negative soil-water tensions, and hence smaller areas of – and less 

frequently occurring – saturated overland flow. 

The percentage reduction in slow flow during the drought was very strongly correlated with the percentage 

reduction in streamflow during the drought (correlation coefficient of 0.90). Over the reduced area of the 

southern SEACI region, no correlation was evident between long-term mean annual rainfall and the 

percentage reduction in rainfall during the recent drought (–0.06) – the majority of catchments in the 

southern SEACI region having experienced a reduction in rainfall during the drought of between 15 and 22 

percent. This finding suggests that runoff-generating processes have changed to a greater extent in the low-

rainfall catchments of the southern SEACI region than in the high-rainfall catchments. More than 70 percent 

of catchments in the southern SEACI region exhibited a statistically significant change (reduction) in 

recession coefficient a, while approximately 50 percent of catchments in the northern SEACI region 

exhibited a statistically significant change (reduction) in a. These results suggest that during the recent 

drought there was a change to the aquifer storage – outflow relationship in these catchments. 

Activity 2 sought to develop a conceptual understanding for the change in the rainfall-runoff relationship. 

Seventeen candidate catchments were identified that had streamflow and groundwater level data prior to 

and during the recent drought. Results are only presented for Axe Creek and Sugarloaf Creek, but these 

catchments typify the behaviour observed in the other 15 catchments. Both Axe Creek and Sugarloaf Creek 

showed a significant reduction in mean annual runoff, annual runoff coefficient (proportion of rainfall that 

becomes runoff) and annual slow flow coefficient (proportion of rainfall the exhibits a ‘delayed’ runoff 

response) and an increase in observed case where flows ceased, as well as evidence of a ‘hydrological 

persistence’ where runoff is dependent upon the climate in previous years. The ‘hydrological memory’ 

appears to increase as the drought progresses. This is most clearly seen in the cease-to-flow cases where 

consecutive years of similar rainfall result in an ever-increasing cease-to-flow and that individual years of low 

rainfall prior to the drought show no or only a small cease-to-flow (less than 10 percent). 

For both catchments, a conceptual rainfall-runoff model was calibrated well (daily NSE > 0.85) over the 1975 

to 1996 period and then used to simulate streamflow over the entire observed record. The models simulated 

runoff in the years prior to 1975 well (daily NSE > 0.8). However, during the drought the models simulated 

runoff poorly and model performance declined as the drought progressed. Coincident with the above 

observations, groundwater levels in both catchments showed a decline since 1997. Prior to 1997, 

groundwater levels were in a pseudo-steady state, but by the end of 2008 they had yet to achieve a new 

steady state. Observations of cease-to-flow and electrical conductivity of the streamflow provide strong 

evidence that the reduction in groundwater levels has resulted in a reduction in baseflow to the river. It is 

thought, however, that the majority of the reduction in streamflow in these catchments was due to an 

unprecedented deepening and drying of the unsaturated zone. Collectively these results strongly suggest a 

change in hydrological behaviour during the recent drought and that the behaviour may have continued to 

change as the drought progressed. However, continued investigation is warranted. This is because 

conceptualising reasons for the change in rainfall-runoff relationship was confounded by uncertainty over 

the change in number of farm dams during the recent drought and the limited ability of conceptual rainfall-

runoff models to simulate low-flow processes well. 

Background 

The main goal of the research in Theme 2 is to improve hydroclimate projections for SEA. The research is at 

the climate–water interface, and its link to climate science and hydrological modelling science is shown 

schematically in Figure 38. 
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Hydrological models are generally tailored for specific applications, and are developed and calibrated using 

local data. There are two main steps involved in estimating climate impact on future runoff characteristics 

and water availability. The first step uses global climate model projections and downscaling models to 

obtain future catchment-scale climate series to drive hydrological models. Research in this area is carried out 

under Project 2.1. The second step involves driving hydrological models with future climate series to 

estimate future runoff. This may require adapting models to account for changes in the rainfall–

temperature–runoff relationship and changes in the dominant hydrological processes in a drier, warmer 

environment with higher levels of carbon dioxide (CO2). Research in this area is carried out under Project 2.2. 

Both projects in Theme 2 are closely related to, and use information from, the projects in Theme 1. 

Researchers in Project 2.2 are building on results from Phase 1 of SEACI to enhance knowledge of climate–

water processes and modelling. That research leads to more accurate and updated estimates of the impact 

of climate change on catchment water yield and streamflow, and also reduces associated uncertainties. This 

report summarises results from two activities in the second year of this 3-year project. 

 

Objectives 

Empirical analysis: quantification of the decline in rainfall and 
streamflow in catchments with long streamflow records in south-
eastern Australia 

• Investigate potential changes in relationships between rainfall, temperature and streamflow. 

• Investigate potential changes to dominant hydrological processes through a low-flow analysis. 

Towards a conceptual understanding of changes in dominant 
hydrological processes 

• Conceptualise changes to hydrological behaviour and runoff-generating processes. 

Method and results 

Catchment selection 

For the purposes of the empirical analysis, we required long, mostly complete time series of observed 

streamflow data. From the gauging stations available in the SEACI region, we chose a threshold of greater 

than 40 years of complete data, and less than 30 days of missing data in total between 1997 and 2008. In 

order to rule out any effects from farm dams or land-use changes (forestry, agriculture or bushfires), a visual 

examination of each catchment was performed with Google Earth. Several catchments were deemed to 

have excessive potential for land-use signals in the streamflow data, and so were excluded. In total, 34 

catchments remained (Table 12). Of these, 14 lie on the eastern coast of New South Wales outside the 

Murray–Darling Basin (MDB), and 20 lie within the MDB, principally in the southern MDB. The median year of 

streamflow data commencement is 1948. 
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Daily maximum temperature and rainfall data for each catchment were obtained from SILO. Missing 

streamflow data were infilled using the Sacramento lumped conceptual rainfall-runoff model (Burnash et al. 

1973), calibrated over the entire period of record. Averaged across all catchments, weighted by the 

catchment area, the study area has seen a 15 percent reduction in annual rainfall during 1997−2008 

compared to the pre-1997 data, a 46 percent reduction in annual streamflow, and a 0.6 ºC increase in 

annually averaged daily maximum temperature. 

Table 12. Streamflow gauging data sets used for the empirical analysis. 

Gauge 

reference 

Catchment name State Area 

(km2) 

Start 

date 

Centred 

latitude 

Centred 

longitude 

201001 Oxley At Eungella NSW 214 1947 –28.4 153.2 

203002 Coopers Ck At Repentance NSW 61 1920 –28.6 153.4 

203005 Richmond At Wiangaree NSW 709 1943 –28.4 152.9 

203010 Leycester At Rock Valley NSW 174 1951 –28.6 153.1 

204017 Bielsdown Ck At Dorrigo Nos.2 & 3 NSW 76 1947 –30.4 152.7 

204030 Aberfoyle At Aberfoyle NSW 199 1951 –30.2 151.8 

204031 Mann At Shannon Vale NSW 344 1951 –29.9 151.8 

204033 Timbarra At Billyrimba NSW 987 1951 –29.4 152.2 

204034 Henry At Newton Boyd NSW 400 1951 –29.9 152.1 

204037 Clouds Ck At Clouds Ck NSW 63 1952 –30.1 152.6 

205006 Nambucca At Bowraville NSW 430 1959 –30.6 152.7 

208006 Barrington At Forbesdale 

(Causeway) 

NSW 602 1945 –32.0 151.6 

218001 Tuross At Tuross Vale NSW 89 1948 –36.3 149.5 

222007 Wullwye Ck At Woolway NSW 519 1949 –36.3 148.9 

401210 Snowy Creek R At Below Granite Flat VIC 417 1933 –36.7 147.4 

401215 Morass Creek R At Uplands VIC 539 1930 –36.9 147.8 

401216 Big R At Joker Creek VIC 366 1935 –36.9 147.4 

403213 Fifteen Mile Creek R At Greta South VIC 226 1959 –36.8 146.3 

405205 Murrindindi R At Murrindindi Above 

Colwells 

VIC 109 1940 –37.5 145.6 

405212 Sunday Creek R At Tallarook VIC 336 1946 –37.3 145.1 

405214 Delatite R At Tonga Bridge VIC 355 1948 –37.1 146.3 

405215 Howqua R At Glen Esk VIC 374 1948 –37.2 146.4 

405217 Yea R At Devlins Bridge VIC 363 1955 –37.5 145.4 

405219 Goulburn R At Dohertys VIC 707 1955 –37.4 146.2 
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Gauge 

reference 

Catchment name State Area 

(km2) 

Start 

date 

Centred 

latitude 

Centred 

longitude 

405226 Pranjip Creek R At Moorilim VIC 818 1958 –36.8 145.4 

405227 Big R At Jamieson VIC 632 1959 –37.4 146.0 

405228 Hughes Creek R At Tarcombe Road VIC 479 1959 –37.0 145.4 

406213 Campaspe R At Redesdale VIC 644 1954 –37.2 144.5 

410024 Goodradigbee R At Wee Jasper 

(Kashmir) 

NSW 990 1915 –35.3 148.7 

410026 Yass R At Yass NSW 1237 1916 –35.0 149.2 

410044 Muttama Creek R At Coolac NSW 1061 1939 –34.8 148.1 

410057 Goobarragandra R At Lacmalac NSW 663 1958 –35.4 148.5 

410062 Numeralla R At Numeralla School NSW 676 1948 –36.4 149.4 

418014 Gwydir R At Yarrowyck NSW 819 1956 –30.5 151.5 

(a) (b) 

  

Figure 48. Mean annual rainfall (a) and runoff (b) of selected catchments in south-eastern Australia. 



 

90 Program Annual Report 2010/11 

Empirical analysis: quantification of the decline in rainfall and 
streamflow in catchments with long streamflow records in south-
eastern Australia 

Investigate potential changes in relationships between rainfall, temperature and 
streamflow 

Changes in the rainfall–streamflow relationship 

First we tested whether the annual rainfall–streamflow relationship during the drought was statistically 

different from the pre-drought rainfall–streamflow relationship. A difference in the relationship indicates 

that streamflow has been lower than expected based on annual rainfall alone. In this case, some of the 

subsidiary features of the drought (such as increased temperatures, increased potential evapotranspiration, 

changes to the seasonal distribution of annual rainfall, surface water – groundwater interactions, changes to 

land use, etc.) may be hydrologically important in explaining the low streamflow during the recent drought. 

Simple functional relationships between annual rainfall and evapotranspiration have long been recognised. 

Perhaps the best known is Budyko's (1974) relationship. Other similarly shaped curves have been proposed 

both before and since Budyko’s (see, for example, Choudhury, 1999; Arora, 2002; Zhang et al., 2004). To first 

order, annual evapotranspiration generally follows these curves quite well. Annual streamflow can then be 

estimated from these relationships by assuming mass balance, i.e. that the sum of annual streamflow and 

evapotranspiration is approximately equal to annual rainfall. 

These curves use the dryness index (i.e. the ratio of annual potential evapotranspiration to annual rainfall) 

rather than annual rainfall by itself to predict streamflow, but the relatively low rate of inter-annual 

variability in potential evapotranspiration in many catchments make rainfall–streamflow relationships (i.e. 

without any use of annual potential evapotranspiration) almost as good, particularly in semi-arid regions. 

Zhang et al.'s (2001) curve, as well as the tanh function (Grayson et al., 1996), are examples of such an 

approach. 

One drawback of many of the rainfall–streamflow relationships described above is that in most cases 

statistical tests on the curve parameters are difficult to perform. For this reason, we considered a linear 

regression between annual rainfall and Box-Cox transformed annual streamflow data (Figure 49). Optimising 

the parameter using a maximum-likelihood procedure (see, for example, Myers, 1990) allows for a linear 

relationship between annual rainfall and streamflow (Box-Cox parameter equal to one) in higher rainfall 

catchments, and non-linear relationships similar to the tanh function (Box-Cox parameter close to zero) for 

lower rainfall catchments. Specifically, we considered the following linear model: 

 iii PIIQ εβαα +++= −−−− ...ˆ
97post97post97pre97pre  (1) 

where iQ̂  is transformed annual streamflow, 97pre−I  and 97post−I  are pre-1997 and post-1997 indicator 

variables, and iP  is annual rainfall. An F-test can be used to test the null hypothesis that the intercepts are 

equal: 

 
0: 97post97pre0 =− −− ααH

  (2) 

Note that the Box-Cox transform is monotonic (i.e. large values of streamflow correspond to large values of 

transformed streamflow). This means that 97pre97post −− <αα  implies that the rainfall–streamflow relationship 

is lower during 1997–2008 compared to the pre-drought period (Figure 49). 
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(a) 

 

(b) 

 

Figure 49. Testing the annual rainfall–streamflow relationship (example catchment 204030 with maximum-
likelihood Box-Cox parameter of 0.1). The linear relationship between annual rainfall and transformed streamflow 
is shown in (a), and the corresponding relationship between annual rainfall and un-transformed streamflow is 
shown in (b). Red points and curves are for 1997−2008 data; black points and curves are for pre-1997 data. 

We found that 22 catchments had significantly different rainfall–streamflow relationships during the recent 

drought compared to the pre-drought time period (Table 13). This suggests that for a given annual rainfall 

amount, the annual streamflow amount is significantly less (as in Figure 49). Or in other words, observed 

annual streamflow is significantly lower than the ‘expected’ amount based on the annual rainfall and the 

long-term relationship between rainfall and streamflow. 

 

 

Table 13. Number of catchments with significantly different rainfall–streamflow relationships and rainfall – 
maximum temperature (Tmax) relationships. 

  Rainfall vs. Streamflow 

  Significantly 

different 

Not significantly 

different 

Total 

Rainfall vs. 

maximum 

temperature 

Significantly 

different 

13 5 18 

Not significantly 

different 

9 7 16 

  22 12 34 

 

Changes in the rainfall–daily maximum air temperature relationship 

In general, at monthly and annual timescales, rainfall and average maximum temperature are inversely 

related (i.e. high temperatures are associated with low rainfall and vice versa; e.g. Nicholls, 2004). Data 

analysis has revealed a trend for higher mean annual maximum temperature for a given mean annual rainfall 

in SEA (Nicholls, 2004; Cai and Cowan, 2008). Next we tested whether the rainfall–maximum temperature 

relationship was significantly different during the recent drought. 
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In contrast to the annual rainfall–streamflow relationships described above, the relationship between annual 

rainfall and annual average maximum temperature is linear (see Figure 50). Thus the Box-Cox transform is 

not needed for the temperature data: 

 iii PIIT εβαα +++= −−−− ... 97post97post97pre97premax,  (3) 

where iTmax,  is annually averaged daily maximum temperature, with the null hypothesis given again by 

Equation (2) to determine whether the intercepts differ significantly before and during the drought. 

 

Figure 50. An example of the relationship between annual rainfall and annually averaged maximum temperature 
for catchment number 204030. Red points and line are for 1997−2008 data; black points and line are for pre-1997 

data 

Out of the 34 catchments, 18 were found to have significantly different rainfall–maximum temperature 

relationships (Table 13) during the recent drought compared to the pre-drought time period. In these 

catchments, residual temperature (in the sense of Nicholls, 2004) has thus been significantly higher during 

the recent drought. 

However, the relationship between different rainfall–streamflow and different rainfall–maximum 

temperature relationships does not appear to be highly correlated. Although the majority of catchments 

have significantly different rainfall–streamflow relationships and significantly different rainfall– maximum 

temperature relationships, several catchments have only one significantly different relationship. In fact the 

chi-squared test statistic for a test for independence on Table 13 is 0.95, which is much less than the 5 

percent critical value of 3.8. This may be because some of those catchments with significantly higher residual 

maximum temperature during the recent drought may have low sensitivity of streamflow to changes in 

temperature. Conversely, the significantly different rainfall–streamflow relationships seen in some 

catchments may be due to other factors such as changed rainfall seasonality and changes in surface–

subsurface connectivity. Spatially, those catchments with significantly different rainfall–streamflow 

relationships are primarily located around the southern MDB, while those catchments with significantly 

different rainfall– maximum temperature relationships are more uniformly spread across the SEACI region 

(Figure 51). 
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(a) 

 

(b)

 

Figure 51. Statistical significance of tests for differing rainfall–streamflow relationships during the drought (left-
hand panel) and differing rainfall– maximum temperature relationships (right-hand panel) 

Sensitivity of annual streamflow to annual rainfall and maximum temperature 

There are a few different approaches to estimating the climate elasticity of streamflow (i.e the sensitivity of 

streamflow to climate variables). One approach is to use calibrated rainfall-runoff or process-based models 

to directly measure the sensitivity of streamflow to changes in rainfall and temperature (Chiew, 2006; Potter 

and Chiew, 2009). Alternatively, sensitivities can be calculated analytically from rainfall–streamflow 

relationships (such as those based on Budyko’s curve (Budyko, 1974) described above, e.g. Arora, 2002; Milly 

and Dunne, 2002). These approaches, however, rely on model assumptions. Data-based approaches – either 

parametric (e.g. Vogel et al., 1999) or non-parametric (e.g. Sankarasubramanian et al., 2001) – allow for 

estimation of streamflow sensitivity without the need for model assumptions. The effect on streamflow of 

changes in maximum temperature is less easily estimated. This is because there is considerable correlation 

between rainfall and temperature (Figure 50) and any effect from residual temperature is generally much 

less apparent than the direct effect of changes in rainfall. 

Here we follow the approach of Vogel et al. (1999) and estimate the sensitivity of annual streamflow to 

annual rainfall and maximum temperature using a multiple regression approach. Regression is ideally suited 

to this problem as any correlation between annual rainfall and annual average air temperature is 

incorporated into the parameter estimation procedure. However, as before, we include a Box-Cox transform 

on the annual streamflow data. 

In semi-arid catchments, the relationship between annual rainfall and annual streamflow can be far from 

linear (e.g. Figure 49). Fitting a linear regression without first transforming streamflow in these catchments 

can result in negative predicted streamflow. Thus in low-rainfall years, streamflow predicted from rainfall 

alone will be much smaller than observed streamflow, resulting in a large residual. But in low-rainfall years, 

the temperature anomaly is typically large and so data from these years will exert a large and erroneous 

influence on the estimate of streamflow sensitivity to temperature. 

We first transform streamflow using the Box-Cox transform to get iQ̂ . We then calculate the relative 

differences in transformed annual rainfall ( ) PPPP ii −=δ  and the annual Tmax anomaly 

maxmax,max, TTT ii −=∆ . Then, for the pre-drought data only, we fit the linear model: 

 iiTiPi TPQ εηδη +∆+= max,ˆˆˆ
  (4) 

In this way, the regression coefficients Pη̂  and Tη̂  can be interpreted as the sensitivity of transformed 

streamflow to rainfall differences and maximum temperature anomalies, with the other variable held 

constant. However, these estimates are not directly useable as they relate to transformed streamflow. 
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To obtain estimates of the sensitivity of rainfall and maximum temperature to un-transformed streamflow, 

we first calculate the expected value of un-transformed streamflow for average rainfall and average annual 

temperature: 

 
( )iii TPQE max,,0| ∆=δ

  (5) 

 
( )0,| max, =∆ iii TPQE δ

  (6) 

To ensure that these estimates from the inverse Box-Cox transform are unbiased (Miller,1984 discusses this 

problem), we use the plug-in density method (see Collins, 1991). Then we define the rainfall elasticity of 

streamflow Pη  as the least-squares slope between iPδ  and ( )iiii TPQEQ max,,0| ∆=− δδ , and the 

temperature elasticity of streamflow Tη  as the least-squares slope between iTmax,∆  and 

( )0,| max, =∆− iiii TPQEQ δδ . Note that if the streamflow data were not transformed initially (or 

equivalently the Box-Cox transform parameter is 1), then PP ηη =ˆ  and TT ηη =ˆ . 

 

Figure  52. Estimated streamflow sensitivities to rainfall ηP and to maximum temperature ηT. For all catchments 
(Table 12). Mustard-coloured ranges for ηP contain zero and are thus not statistically significant 

The calculated streamflow sensitivities to rainfall are shown in Figure  52. Most lie within the range of about 

1.5 to 3.5, consistent with other estimates in SEA (Chiew, 2006; Potter et al., 2008). As the estimates are least-

squares regression estimates, confidence intervals for these sensitivities are straightforward to calculate, and 

these are shown as well. The uncertainty is generally larger for larger values of the elasticity. This is due to 

the greater variability of streamflow in these catchments. Nevertheless, all values of ηP are statistically 

significant. Larger values of ηP are located in drier catchments. These catchments also tend to have larger 

absolute (i.e. more negative) values of ηT, and this is consistent with theoretical results for streamflow 

sensitivity to rainfall and potential evapotranspiration (Dooge et al., 1999; Milly and Dunne, 2002).  
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In contrast, the streamflow sensitivity to maximum temperature is not statistically significant in 15 of the 34 

catchments. These are shown in mustard in Figure  52. The mean of all of the statistically significant values of 

ηT is −0.186 (i.e. a 1 degree increase in average daily maximum temperature leads to a 18.6 percent 

reduction in streamflow). However, more negative values of ηT are located in those catchments that have 

seen the least increase in average maximum temperature during the drought (less than 0.6 ºC). In those 

catchments with average maximum temperature anomalies greater than 0.6 ºC, average ηT is −0.116. 

  

Figure 53. Proportion of observed streamflow reduction explained by streamflow sensitivity factors for all 
catchments considered (Table 12). 

Next, we look at the reduction in streamflow during 1997−2008 compared to the pre-drought data for each 

catchment. Multiplying the sensitivity factors by the observed rainfall and maximum temperature anomalies 

for each catchment yields a proportional break-up of the observed streamflow-reduction (Figure 53). Here, a 

temperature effect is only included if the sensitivity ηT is statistically significant. Averaged over all 

catchments, weighted by the catchment area, we obtain estimates for the rainfall and maximum 

temperature effect on streamflow for all catchments, those in the MDB, and those outside (Table 14). 

Table 14. Estimate of the effect of the observed reduction in rainfall and the observed increase in maximum 
temperatures during the recent drought (1997−2008). The first percentages show reductions from the long-term 

mean; the bracketed percentages are the proportion of the observed reduction in streamflow. 

Region Rainfall effect Temperature effect Residual Total 

Outside MDB –23% (55%) –3% (7%) –16% (38%) –42% 

MDB –34% (69%) –3% (7%) –11% (24%) –48% 

All –30% (65%) –3% (7%) –13% (28%) –46% 
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Potential changes to dominant hydrological processes through a low-flow analysis 

In the previous Section we reported a 46 percent weighted average reduction in streamflow across 34 

selected catchments (Table 14). Sixty-five percent of this was accounted for by a reduction in rainfall and 7 

percent to changes in temperature. The remaining 28 percent unexplained residual may be due to changes 

in seasonality and inter-annual variability of rainfall; land management (e.g. change in farm dams); or 

changes in hydrological processes. A popular line of thought has been that changes to dominant 

hydrological process due to an extended drought are most likely to be manifested in those processes 

associated with long-term storages (e.g. in the unsaturated and saturated zone). Hence this empirical 

analysis focused on parameters associated with low-flow processes, such as baseflow and groundwater 

recession constants. 

Assessment of changes in rainfall and streamflow percentiles and cease-to-flow 

The runoff, rainfall, runoff coefficient and daily percentiles of rainfall and runoff for each season and each 

year of observed records were computed for each of the 34 catchments. The non-parametric Wilcox test was 

applied to the resulting seasonal and annual time series, to assess whether the median value was 

significantly different during the recent drought (1997–2008) compared to the prior period (pre-1997). 

Figure 54 shows that all catchments in the southern half of the SEACI region, except for one, exhibited a 

statistically significant reduction in median annual runoff during the drought and more than 80 percent of 

these catchments exhibited a statistically significant change in their median runoff coefficient. Across all 

southern SEA catchments, a statistically significant difference was also observed for daily runoff percentiles 

between 10 and 60 (Figure 55). The two catchments in the southern SEACI region that did not show a 

statistically significant difference for the 1st and 5th percentiles of daily runoff (Figure 55) were the two 

wettest catchments (Figure 48). With one exception, catchments in the northern part of the region did not 

consistently exhibit a significant change in hydrological behaviour across multiple metrics. The spatial 

pattern of results presented in this Section is consistent with the spatial patterns observed in the previous 

Section. 
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(a) 

 

(b)

Figure 54. (a) Comparison of median annual rainfall (P) and runoff (R) during the recent drought and prior to the 
recent drought. ‘1’ indicates a result that is statistically significant (p<0.05) and ‘0’ indicates a result that is not 

statistically significant. For example in those catchments shaded red the median annual rainfall was not 
statistically significantly different during the recent drought and prior to the recent drought, but the median 

annual runoff was statistically significantly different. (b) Comparison of median annual runoff coefficient during 
the recent drought and prior to the recent drought 
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Figure 55. Comparison of median daily rainfall percentiles (P) and runoff percentiles (R) during the recent drought 
and prior to the recent drought. ‘1’ indicates a result that is statistically significant (p<0.05) and ‘0’ indicates a 

result that is not statistically significant. 
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Figure 55 illustrates that there was no statistically significant difference between the very high daily rainfall 

percentiles (1st percentile) observed during the drought and those observed prior to the drought. The 

statistically significant change in daily rainfall occurred between the 5th and 40th percentiles. Notably, about 

80 percent of catchments in the southern half of the region exhibited a significant difference in the 1st 

percentile of daily runoff during the drought compared to that observed prior to the drought. One possible 

explanation is that in small catchments, a statistically significant reduction in very high runoff percentiles (1st 

percentile) during the drought without a corresponding reduction in very high daily rainfall percentiles (less 

than 1st percentile) may be evidence for a deepening of the unsaturated zone and more negative soil water 

tensions, and hence smaller areas of and less frequently occurring saturated overland flow. However, it is 

difficult to definitively attribute cause, because of the confounding effect of farm dams, which are said 

(anecdotally) to have increased in number during the recent drought, and the implied assumption that very 

high daily runoff percentiles are the result of very high daily rainfall percentiles. However, this anecdotal 

evidence is tempered by a recent study (GA, 2008) which indicates that across the southern parts of the 

MDB, farm dams increased in number by only 6 to 9 percent between 1994 and 2005, though this figure may 

vary locally. At the time of analysis, complete SEA farm dam details for 2005 were unavailable. These data 

have since been sourced and in the future the likely influence of farm dams on streamflow will be assessed 

on a catchment-by-catchment basis. 

Cease-to-flow was designated as being flow less than 0.1 ML/day (the threshold for accurately measuring 

flow using a V-notch weir). Approximately 40 percent of the catchments in southern SEA show a statistically 

significant difference in the cease-to-flow metric during and prior to the recent drought. All of these 

catchments had a low mean annual rainfall (Figure 48); about 40 percent of them were ephemeral prior to 

the drought and about 60 percent ephemeral during the drought. Of the remaining catchments in southern 

SEA, about 30 percent were ephemeral prior to the drought, but only 25 percent were ephemeral during the 

drought. Catchments that exhibited significant change in cease-to-flow behaviour during the drought were 

already intermittently experiencing a surface-water to groundwater disconnection due to low mean annual 

recharge and rainfall. 

Trends in annual streamflow and slow flow 

In a recent assessment of slow flow at 141 sites in the MDB, CSIRO (2010b) used a Generalised Additive 

Model, which accounts for the effects of exogenous influences (rainfall and seasonality were chosen as 

explanatory variables). They found a downward trend in 95 percent of gauges analysed, of which 66 percent 

were statistically significant at the 5 percent level. However, it is likely that groundwater extraction was 

taking place in many of these catchments and the authors concluded that the downward trends were most 

likely due to land-use change or groundwater extraction. Here trends in baseflow were examined in our 34 

unimpeded catchments, which were selected in part to exclude notable groundwater extraction and 

forestry. 

The task of separating baseflow (sub-surface flow) from river discharge data has many practical difficulties 

(Appleby, 1970; Kirchner, 2003) and a variety of methods exist (Nathan and McMahon, 1990; Chapman, 1999; 

Eckhardt, 2005). This study used the Lyne and Hollick digital filter (Grayson et al., 1996). The quick and slow 

flow responses resulting from the application of this method have little physical reality, hence the slow flow 

component is not necessarily equivalent to baseflow (i.e. it could be delayed surface runoff). Despite this 

limitation the filter has been widely applied and there is a considerable body of data available for 

comparative purposes (e.g. Lacey, 1996). Here two values for the alpha term were trialled, 0.925 and 0.98 (as 

per CSIRO 2010b). While they resulted in different quantities of ‘slow flow’, the trends and proportions prior 

to and during the drought were the same. 

The percentage reduction in slow flow during the drought was very strongly negatively correlated (–0.82 

using Spearman rank correlation) to the long-term mean annual rainfall for the 34 catchments, which was a 

stronger negative correlation than that between the percentage reduction in streamflow and long-term 

mean annual rainfall (–0.72; Table 15). The percentage reduction in slow flow during the drought was very 
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strongly correlated with the percentage reduction in streamflow during the drought (correlation coefficient 

of 0.90). 

Examining only those catchments located in southern SEA, the percentage reduction in slow flow during the 

drought was very strongly negatively correlated (–0.84) with long-term mean annual rainfall, which was a 

slightly weaker correlation than the correlation between the reduction in streamflow and long-term mean 

annual rainfall (–0.88). For these catchments, the correlation between the percentage reductions in baseflow 

during the drought was very strongly correlated with the percentage reduction of streamflow during the 

drought (0.96). 

Notably, over the reduced area of southern SEA, no correlation was evident between long-term mean 

annual rainfall and the percentage reduction in rainfall during the recent drought (–0.06) – the majority of 

catchments in southern SEA experienced a reduction in rainfall during the drought of between 15 and 22 

percent. This finding suggests that runoff-generating processes have changed to a greater extent in the low-

rainfall catchments of the southern basin than in the high-rainfall catchments. This is consistent with 

previous observations that rainfall-runoff elasticities are highest in catchments with low runoff coefficients 

(Chiew, 2006). Prior to the drought, many lower-rainfall catchments already demonstrated a disconnection 

between the groundwater and surface water as evidenced by periods of cease-to-flow and hence are 

thought to be particularly susceptible to years of low rainfall. They are also more likely to have lower relief 

and be less incised than the higher-rainfall catchments resulting in different patterns, depths and 

groundwater flow paths. 

Table 15. Correlation matrix between annual rainfall, stream flow and slow flow using Spearman-ranked 
correlation method. Green squares show correlation values for all 34 selected catchments. Yellow squares show 

correlation values for catchments in southern SEACI region. 

Parameter Mean annual 

rainfall (mm) 

Percentage 

reduction 

streamflow 

Percentage 

reduction 

slow flow 

Percentage 

reduction 

rainfall 

Mean annual rainfall (mm) 1 –0.72 –0.82 –0.17 

Percentage reduction streamflow –0.88 1 0.90 0.50 

Percentage reduction slow flow –0.84 0.96 1 0.36 

Percentage reduction rainfall –0.06 0.23 0.20 1 

 

Figure 56 illustrates that slow flow during the recent drought was significantly different (p<0.05) in all the 

catchments in the southern SEACI region, but was significantly different in only a few of the northern 

catchments. 
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(a)

 

(c)

 

Figure 56. (a) Comparison of median annual rainfall (P) and runoff (R) during and prior to the recent drought. ‘1’ 
indicates a result that is statistically significant (p<0.05) and ‘0’ indicates a result that is not statistically 

significant. (b) Comparison of median annual slow flow (BF) and recession constant (a) during and prior to the 
recent drought. ‘1’ indicates a result that is statistically significant (p<0.05) and ‘0’ indicates a result that is not 

statistically significant. 

Hydrograph recession analysis 

Hydrograph recessions reflect the aquifer storage – outflow relationship of an aquifer. Analysis of flow 

recession curves enables the groundwater reservoir to be characterised. In engineering hydrology 

applications, a single linear model (Equation 7) is typically used to model flow recessions: 

 

  (7) 

 

where Qt is the discharge at time t, Q0 the initial discharge and k the retention constant. 

In theory, changes in computed k over time indicate changes to the characteristics of the groundwater 

reservoir. The attraction of using a linear model is its simplicity and that the retention constant k has the 

dimension of time. Therefore k can be interpreted as being representative of residence or turnover time for 

water in the aquifer. However, many studies have found that the underlying assumption of Equation 7 – that 

the storage is proportional to the outflow – does not hold (Wittenberg, 1994; Moore, 1997). A similar finding 

was noted in this study, with most catchments exhibiting non-linear behaviour. As a consequence, there was 

a correlation between the lengths of the recessions and k, with those years typified by short recessions 

having low values of k and those years with long recessions having high values for k. For this reason we used 

a non-linear model as described by Equation 8: 

 

  (8) 
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The first step in this analysis was to identify suitable data pairs and group them by season and/or year. Data 

pairs were selected such that Qt>Qt-1 and that the total catchment average rainfall on the two preceding 

days was <1 mm. The parameter b in Equation 8 was set to 0.5 based on the results from theoretical and 

experimental studies (Wittenberg, 1999). Parameter a in Equation 8 was then optimised to each set of data 

pairs in each season/year. Wittenberg (1999) argues that even if the ‘true’ value of b is not exactly met, the 

assumption of b=0.5 would be more physically based and better fitting for the majority of river basins than 

the linear reservoir. 

More than 70 percent of catchments in the southern SEACI region exhibited a statistically significant change 

(reduction) in recession coefficient a (Figure 56). Approximately 50 percent of catchments in the northern 

SEACI region exhibited a statistically significant change (reduction) in a. These results suggest that during 

the recent drought there was a change in the aquifer storage – outflow relationship of these catchments. 

Those catchments in Figure 56 that indicate a statistically significant change in slow flow, but not in 

recession coefficient a, either have a very low or very high mean annual rainfall. In the low-rainfall 

catchments the recession coefficient is very low (much less than 1) indicating negligible surface water – 

groundwater connectivity, but rather bankflow return (i.e. water that may have infiltrated into the river bank 

returning to the river once the river stage has declined) following an event. 

 

Towards a conceptual understanding of changes in dominant 
hydrological processes 

Conceptualised changes to hydrological behaviour and runoff-generating processes 

Petrone et al. (2010) surmised that in the south-west Western Australia, a new hydrological regime has 

developed in many catchments over the recent record. These authors undertook a trend and change point 

analysis of streamflow data from south-west Western Australia. Trend tests showed a significant decline in 

annual rainfall and runoff between 1950 and 2008, with corresponding change points for both rainfall and 

streamflow in the late 1960s or mid-1970s. Over the more recent record (1989–2008), however, streamflow 

decline was observed as a step change but rainfall did not show a significant downward trend. 

Excluding the potential for changes in land management to have occurred, the results from previous 

Sections lend support to the supposition that a new hydrological regime may have also occurred in SEA. In 

an earlier section it was observed that a statistically significant change occurred in the rainfall-runoff 

relationship in the 80 percent of the catchments in the southern SEACI region and in a later Section we then 

speculated that a number of consecutive years of below-average rainfall resulted in a deepening of the 

unsaturated zone and more negative soil water tensions, and hence smaller areas of – and less frequently 

occurring – saturated overland flow. 

This Section focuses on developing a conceptual understanding of hydrological behaviour in selected 

catchments and identifying evidence for a change in hydrological regime by a weights-of-evidence 

approach. Without the opportunity or foresight to implement a controlled experiment (requiring many years 

of resource-intensive monitoring), we note that retrospective analyses such as this are challenged by data 

limitations. In this study we were limited to routine measurements made by departments in the jurisdictions 

of the study area and the use of surrogate parameters. For example, in the absence of soil-water 

measurements, we used information on groundwater levels to infer a change in unsaturated zone thickness 

and soil water tension. We also used measurements of stream electrical conductivity to infer the absence or 

presence of groundwater discharge into the stream. In an attempt to provide additional evidence for a 

change in hydrological behaviour, we calibrated the Sacramento rainfall-runoff model between 1975 and 

1996 and then simulated runoff over the entire period of observed record (~1960s–2008). By assessing 

model performance prior to 1975 and between 1997 and 2008 and comparing with the calibration period, 

we investigated how well a model calibrated prior to the drought was able to simulate runoff during the 

drought, compared to an independent period prior to the drought. 
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Unfortunately, most unregulated catchments in Australia with streamflow data do not have groundwater 

data of sufficient length or quality, and vice versa. Ultimately, we settled on 17 upland catchments in Victoria 

for analysis, as these had the most complete data and were also located in that part of the basin that has 

experienced the greatest reductions in runoff. These catchments had streamflow records prior to and during 

the drought and groundwater level data, which were taken as part of the dryland salinity programs during 

the 1980s and 1990s. Groundwater extractions were negligible and catchments were unregulated to the 

best of our knowledge (based on Google Earth and discussions with hydrogeologists from the Victorian 

Department of Primary Industry). Unfortunately, as we are still trying to obtain the GeoScience Australia 

Farm Dam data, we were not able to make a quantitative assessment of the likely impact of farm dams on 

runoff in each of these catchments. These data will be pursued in 2011/12. 

To help develop a conceptual understanding of the relationship between hydrological parameters, key 

parameters were plotted together on the one Figure. Such Figures were generated for all 17 catchments, but 

are only shown here for Axe Creek (Figure 57) and Sugarloaf Creek (Figure 58). The data available for these 

two catchments typify those catchments that had the better quality data. 

From top to bottom, Panel #1 shows mean annual rainfall (blue), mean annual runoff (green), simulated 

runoff (pink), and number of days in each year with streamflow data (orange). Panel #2 shows a monthly 

rainfall mass-residual curve (blue), annual runoff coefficient (black), and slow-flow runoff coefficient using 

0.98 for alpha (brown). Panel #3 shows daily runoff (green), cease-to-flow (i.e. flow less than 0.1ML/day, red), 

and simulated cease-to-flow (pink). Panel #4 shows groundwater levels (red, brown, green) and manually 

sampled EC (orange points), box plots of manually sampled EC for each year, and continuous EC (orange 

line). Panel #5 shows groundwater levels (red, brown, green) and non-linear recession coefficient a (black 

points). 

In both catchments, there was a significant reduction in mean annual runoff, annual runoff coefficient and 

annual slow-flow coefficient, and an increase in observed cease-to-flow. Close examination of these data 

indicates that a ‘hydrological persistence’ is evident, where runoff depends upon the climate in previous 

years. The ‘hydrological persistence’ appears to increase as the drought progresses. This is most clearly seen 

in the cease-to-flow where consecutive years of similar rainfall result in an ever-increasing cease-to-flow and 

individual years of low rainfall prior to the drought show no or only a small cease-to-flow. 

The Sacramento conceptual rainfall-runoff model achieved a good calibration over the 1975 to 1996 period 

(daily Nash Sutcliffe Efficiency (NSE) greater than 0.85 and bias less than 0.02) in both catchments. In the case 

of Axe Creek, the model simulated runoff in the 10 years prior to 1975 well (daily NSE=0.81 and bias=0.044). 

However, during the drought the model simulated runoff poorly (daily NSE=0.4 and bias 1.105). A similar 

result was observed for Sugarloaf Creek, where the model simulated runoff in the 2 years prior to 1975 well 

(daily NSE=0.85 and bias=0.1; though it should be noted this time frame is too short to objectively assess 

model performance), but the model skill was considerably poorer over the drought period (daily NSE=0.62 

and bias=3.338). In both catchments, model performance declined as the drought progressed. These results 

suggest a change to the hydrological behaviour of these catchments had occurred since 1997 and that the 

relationship may have continued to change as the drought progressed. Again, it should be noted, however, 

that an increase in farm dams over the drought period would have a similar effect on model performance 

and that conceptual rainfall-runoff models typically model low-flow events more poorly than high-flow 

events (e.g. see Panel #3 for both catchments). 

Coincident with the above observations, groundwater levels in both catchments declined since 1997, 

though this is best seen in Axe Creek due to the smaller depth-to-watertable scale and having groundwater 

levels closer to the surface. Prior to the drought, groundwater levels were in a pseudo-steady state, but with 

many consecutive years of below-average rainfall, groundwater levels steadily declined and had not 

attained a new steady state. The decline in groundwater levels in Axe Creek is highly likely to be responsible 

for the steady increase in cease-to-flow through a lack of surface water – groundwater connection and 

change in the aquifer storage–outflow relationship (as shown by the recession constant a). Evidence for this 

is that in other very low-rainfall years prior to the drought (e.g. 1982, which had the lowest annual rainfall 

since 1965) the percentage cease-to-flow was zero; in the following summer (1983) which had a higher-

than-average mean annual rainfall the cease-to-flow increased, but only to about 10 percent. Anomalously 
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high stream EC observations were also recorded for 1982. Sugarloaf Creek exhibited a similar pattern even 

though it appears to have a shorter groundwater residence time compared to Axe Creek, where the peak 

cease-to-flow coincides with a year of low rainfall. Further evidence for a disconnection between the surface 

water and groundwater systems in Axe Creek can be seen in the reduction in streamflow EC in 2003, despite 

very low-rainfall years, which prior to this resulted in high streamflow EC. It is surmised that post-2003 

groundwater contribution to streamflow is limited to bankflow return shortly after an event as evident by 

the low streamflow EC and small recession coefficient a. 

Results presented here, however, indicate that slow flow has declined at roughly the same proportion as 

total flow across most catchments in SEA and that slow flow was a relatively small proportion of total 

streamflow. Hence it is thought that only a small component of the reduction in streamflow was due to a 

reduction in slow flow, which is often used as an analogy for baseflow. Declining groundwater levels, 

however, strongly imply a deepening of the unsaturated zone and more negative soil water tensions, which 

– as mentioned earlier – would be likely to result in smaller areas of and less frequently occurring saturated 

overland flow.  

While the focus of discussion here has been on Axe Creek and to a lesser extent Sugarloaf Creek, these 

observations hold true for the other 15 catchments. The results presented strongly suggest a change in 

hydrological behaviour during the recent drought and that the behaviour may have continued to change as 

the drought progressed (and groundwater levels further decreased). However, further investigation is 

warranted. This is because the interpretation of hydrological behaviour in these catchments is confounded 

by uncertainty over the change in farm dam number and volume during the recent drought and the inability 

of conceptual rainfall-runoff models to simulate low-flow processes well. 
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Figure 57. Hydrological metrics for Axe Creek. 
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Figure 58. Hydrological metrics for Sugarloaf Creek 
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Conclusions 

There were two studies in Project 2.2 in 2010/11. The first component of the first study examined changes in 

the relationship between rainfall, temperature and streamflow and the sensitivity of streamflow to rainfall 

and temperature. We found that: 

• Rainfall–streamflow relationships and rainfall–maximum temperature relationships appear to be 

different during the recent drought compared to the long-term pre-drought period. 

• The spatial coherence between these are fairly low, suggesting that while increased temperatures 

did play a role in reducing streamflow during the recent drought, other subsidiary features of the 

recent drought were important. 

• Using a multiple regression approach, an average 46 percent reduction in streamflow was observed 

across the catchments, 65 percent of which was accounted for by reduction in annual rainfall during 

the recent drought, 7 percent was accounted for by increased annually averaged daily maximum 

temperature  and 28 percent was unexplained. 

The second component of the first study used traditional hydrological empirical techniques to investigate 

which components of the catchment water balance may have experienced change during the drought. We 

found that: 

• During the drought, a statistically significant change (reduction) in daily rainfall occurred between 

the 10th and 40th percentiles. 

• Very high daily rainfall percentiles (i.e. 1st percentile) during drought were not found to be 

statistically different from those prior to the drought, but about 80 percent of catchments in the 

southern half of the SEACI region exhibited a statistically significant difference (reduction) in the 1st 

percentile of daily runoff. This lends support for a deepening and ‘drying’ of the unsaturated zone 

and hence smaller areas of – and less frequently occurring – saturated overland flow. 

• Runoff-generating processes changed to a greater extent in the low-rainfall catchments of the 

southern SEACI region than in the high-rainfall catchments. The percentage reduction in slow flow 

was very strongly correlated with the percentage reduction in total streamflow. 

• More than 70 percent of catchments in the southern basin exhibited a statistically significant 

change (reduction) in recession coefficient a suggesting that during the recent drought there was a 

change in the aquifer storage – outflow relationship in these catchments. 

The second study sought to develop a conceptual understanding for the change in the rainfall-runoff 

relationship. It was found that: 

• Conceptual rainfall-runoff models calibrated between 1975 and 1996 simulated runoff in the years 

prior to 1975 well but simulated runoff increasingly poorly over the course of the drought. 

• Prior to 1997, groundwater levels were in a pseudo-steady state, but during the drought they did 

not achieve a new steady state. Observations of cease-to-flow and streamflow EC provide strong 

evidence that the reduction in groundwater levels has resulted in a reduction in baseflow to the 

river. 

• It is thought, however, that the majority of the reduction in streamflow in these catchments was 

due to an unprecedented deepening and drying of the unsaturated zone. Declining groundwater 

levels strongly imply a deepening of the unsaturated zone and more negative soil-water tensions, 

which would be likely to result in smaller areas of and less frequently occurring saturated overland 

flow. 
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Collectively, these results strongly suggest a change in hydrological behaviour during the recent drought 

and that the behaviour may have continued to change as the drought progressed. However, continued 

investigation is warranted. This is because conceptualising reasons for the change in rainfall-runoff 

relationship was confounded by uncertainty over the change in number of farm dams during the recent 

drought and the inability of conceptual rainfall-runoff models to simulate low-flow processes well. These 

confounding factors will be addressed in 2011/12 as part of the model development component of the 

work. 

Links to other projects 

Both projects in Theme 2 are closely related to, and use information from, the projects in Theme 1. The 

future climate input data used in Project 2.2 were derived in Project 2.1. 
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CHAPTER 6: PROJECT 3.1 

Advancing seasonal predictions for south-eastern Australia 

Eun-Pa Lim, Harry Hendon, Sally Langford and Oscar Alves 

Abstract 

This study assesses the improvements in seasonal climate forecasts for south east Australia (SEA) using the 

upgraded Bureau of Meteorology Predictive Ocean Atmosphere Model for Australia (POAMA2) compared to 

the previous POAMA1.5 system (POAMA1.5b). The main upgrades of POAMA2 are an improved method to 

initialise the ocean model and an improved method to generate the ensemble of forecasts. An ensemble of 

forecasts is made from slightly perturbed initial conditions and using three slightly different versions of the 

model in order to  account for forecast uncertainty due to model errors and due to the sensitive dependence 

on the initial conditions, whose accurate depiction is limited by observational uncertainty. This comparative 

assessment is based on a set of re-forecasts for the period 1980-2010. The assessment focuses on 

improvements in forecast accuracy and other measures of forecast quality such as reliability (the average 

agreement between forecast probabilities and mean observed frequency of occurrence), sharpness (the 

tendency to forecast probabilities near zero or 100 percent) and resolution (ability of the forecasts to resolve 

events into different outcomes).  

Compared to POAMA1.5b, POAMA2 demonstrates improved skill in predicting El Niño conditions in the 

Pacific and the Indian Ocean Dipole phenomenon especially the ocean surface temperatures in the eastern 

Indian Ocean (the eastern pole of the IOD). Both the IOD and El Niño are primary drivers of climate variations 

in SEA, and therefore, good climate predictions in SEA are predicated upon good predictions of these key 

drivers. One of the model versions of POAMA2 uses an explicit mean-state bias correction, which results in 

an improved representation of the effects of El Niño across SEA but unfortunately also results in slightly 

reduced ability to predict El Niño conditions in the Pacific.   

Taking the benefits of improved ocean initial conditions and the improved method to generate forecast 

ensembles, POAMA2 demonstrates improved forecast accuracy for SEA for all seasons except for late 

autumn. Importantly, POAMA2 shows improved forecast reliability compared to POAMA1.5b.  However, 

POAMA2 forecasts are far from being perfectly reliable. Calibration (post-processing) of the forecasts is 

shown to improve reliability but degrades sharpness. Multi-model ensemble forecasts using POAMA2 and 3 

models that contributed to the European Union ENSEMBLES project are shown to be a good way of 

improving accuracy, reliability, and resolution without sacrificing sharpness. 
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Background 

The Bureau of Meteorology makes seasonal climate forecasts using a coupled atmosphere ocean climate 

model (POAMA). The POAMA forecast system is continually being developed and has been recently 

upgraded to version POAMA2. The key upgrades over the older version POAMA1.5b are: (i) an improved 

initialisation of the ocean using the POAMA Ensemble Ocean Data Assimilation System (PEODAS; Yin et al., 

2010); and (ii) an improved method of ensemble generation (increasing the ensemble to 10 members each 

from 3 slightly different versions of the model to better account for forecast uncertainty due to model error). 

The new ensemble generation strategy was motivated by SEACI1 work that showed that the seasonal 

climate forecasts from the older POAMA1.5 suffered from low reliability. 

Objectives 

• Assess improvements in forecast quality for SEA using POAMA2 compared to POAMA1.5b. 

• Assess the forecast model’s representation and prediction of the main mechanisms of climate 

variability that provide seasonal predictability of climate in SEA so as to guide future model 

development and to provide insight as to the degree that systematic model error is acting to limit 

forecast skill. 

• Explore benefits for improved reliability by calibration (post-processing) of forecasts from  POAMA2  

and  by combining POAMA2 forecasts with other available international model forecasts into a 

multimodel ensemble and provide uncalibrated and calibrated forecasts to Project 3.2. 
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Methods 

 Based on results of SEACI1 that indicated low reliability of the POAMA1.5 seasonal climate forecasts, a new 

ensemble generation strategy for POAMA2 was developed in order to improve forecast reliability. The 

strategy adopted three slightly different versions of the model in order to better represent forecast 

uncertainty due to model errors. One model version used exactly the same model physics as POAMA1.5b. 

The other two model versions used a slightly modified treatment of shallow convection (which helped to 

reduce model drift) but differed only in that an explicit bias correction was applied in one version in order to 

further limit climate drift. For each of the three model versions of POAMA2, 10 ensemble members were 

generated from slightly different initial ocean conditions provided by the new ocean assimilation system 

PEODAS. The ocean perturbations sample forecast uncertainty due to sensitivity to the initial state. In 

contrast, a single ensemble of 10 members was generated from POAMA1.5b. The set of re-forecasts (referred 

to as hindcasts) were generated from the first of each month for the period 1960-2010 (for POAMA2) and 

1980-2010 for POAMA1.5b. The forecast duration was nine months. The comparison here focuses on the 

common period 1980-2010. Some limited comparison is also made to forecasts from three models that 

contributed to the EU ENSEMBLES projects.  

 Monthly mean forecasts from the models were verified against observed  monthly mean analyses of sea-

surface temperature, mean sea-level pressure, and Australian rainfall provided by  Hurrell et al. (2008), NCEP2 

(Kanamitsu et al., 2002) and the Australian Water Availability Project (AWAP) 

<http://reg.bom.gov.au/climate/austmaps/metadata-daily-rainfall.shtml>, respectively. In order to account 

for the mean model bias (climate drift), monthly mean forecast anomalies were generated by subtracting 

the model climatology based on the hindcasts 1980-2010. The model climatology is a function of forecast 

start month and lead time. Observed anomalies for each month and year were similarly developed by 

subtracting the observed climatology for the period 1980-2010. 

Probabilistic forecasts for above/below median SEA Australian rainfall were verified for accuracy using hit 

rates (proportion of correct forecasts expressed in percentage and for reliability, resolution and sharpness 

using the construction of attributes diagrams, Figure 59). The ensemble mean forecast was assessed using 

correlation with the observed anomalies. 

In order to provide insight as to the degree that systematic model error is limiting forecast skill and to help 

guide future model development, the representation and prediction of the main mechanisms of climate 

variability that provide seasonal predictability of climate in SEA are assessed. The key modes of tropical 

variability that affect SEA climate are the El Niño phenomenon, which we monitor with the NINO3 SST index 

(Figure 60a), east-west shifts of El Niño, which we monitor with the Modoki El Niño SST index (EMI) (Figure 

60b) , and the Indian Ocean Dipole, which we monitor with the Diople Mode SST Index (DMI) (Figure 60c). 

We monitor ocean surface temperature variations in the eastern pole of the IOD using the Indian Ocean 

Dipole east SST index (IODE). Surface temperature variations in the IODE region are thought to be the 

primary source of tropical convective variability during IOD events that affect Australian climate (e.g. Cai et 

al. 2011).  We also assess the representation and prediction of the dominant mode of extratropical 

atmospheric variability, the so called Southern Annular Mode (SAM; Figure 60d), which impacts rainfall in the 

far southern portion of SEA during winter and in the eastern portions of SEA in summer.  

The direct rainfall forecasts from POAMA were also calibrated (post-processed) using an inflation of variance 

technique (Johnson and Bowler, 2009). This technique calibrates each ensemble member forecast to have 

the same variance as the observation but maintains the original forecast accuracy (i.e the correlation of the 

ensemble mean forecast with the verification). Calibration improves probabilistic forecast reliability while 

minimizing root-mean-square error of the ensemble mean forecasts. 
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Figure  59. Example attributes diagrams for probabilistic predictions of the occurrence of a above/below median 
climate event. The size of the dot indicates the number of forecasts in each probability bin. Examples depict a 

range of reliability, sharpness and resolution, as indicated above each panel 
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Figure 60. Left panels:  Standardized time series of the monthly NINO3, EMI, DMI, and SAM indices based on 
observation 1980-2010. Right panels:  Spatial patterns of the regression onto the time series in the left panels for 
sea-surface temperature (°C)  for NIÑO3, EMI, and DMI, and mean sea-level pressure (hPa) for the SAM. Use of 

standardized indices means that the displayed spatial patterns have amplitude associated with a one standard 
deviation anomaly of the associated index 
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Results 

Prior to assessing the POAMA forecasts, we begin by examining the observed relationship of SEA rainfall 

with El Niño, the IOD, and the SAM. The observed relationships between rainfall in SEA with these modes of 

climate variability  indicates that the IOD (as monitored by the DMI)  has the most dominant impact on 

rainfall across the southern portions of SEA during winter-spring (areas with red shading in Figure 61a). The 

influence of the two different types of El Niño is distinctive over SEA: eastern Pacific El Niño, as monitored by 

the NIÑO3 SST index, has the dominant impact on rainfall in the southern portions of SEA during late spring-

early summer (green shades in Figure 61a), whereas central Pacific El Niños, as monitored by the EMI index, 

have the strongest impact on rainfall in the northern portion of SEA during late autumn-spring (blue shades 

in Figure 61a). The magnitude of the correlation between mean rainfall over SEA and these indices (Figure 

61b) confirms the dominance of the IOD (as monitored by the DMI) on winter and spring rainfall. Noting that 

the IOD and El Niño are strongly related to each other in spring, the influence of El Niño, as measured by 

NINO3 SST index, is comparable to the IOD in this season. However, based on Cai et al. (2011), we now 

understand that the impact of El Niño on rainfall in southern portions of SEA in spring is largely produced via 

the co-varying surface ocean temperatures in the Indian Ocean associated with the IOD.  So, the apparently 

strong impact of El Niño as indicated in Figure 61b means that forecasts of SEA rainfall during El Niño will be 

limited by the ability to predict the IOD.   

(a)                                                                                (b) 

 .   

Figure 61 (a) Shading indicates which index (NINO3, EMI, DMI or SAM) has the largest correlation with observed 
rainfall 1980-2010. Correlations were computed for the indicated 3 month mean seasons. (b) The magnitude of 

the correlation between the mean rainfall over south-eastern Australia and each of the indices. 
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The ability to predict the key modes of variability that affect SEA rainfall is assessed by scoring the forecasts 

of the NINO3, EMI, and DMI SST indices and the SAM index. Here, forecast accuracy is assessed using the 

correlation of the ensemble mean forecast of these indices with the verifying analysis (Figure 62). For this 

analysis, forecasts and verifying analysis  are for 3-month means. Forecasts from POAMA2 show a good 

improvement in accuracy compared to POAMA1.5b for prediction of the occurrence of El Niño, as monitored 

by the NINO3 SST index, at all lead times to 9 months. A more modest improvement in predicting east-west 

shifts of El Niño is evident for the EMI. The improvement in predicting NINO3 SST index is found regardless of 

the starting month for the forecast (Figure 63a),  whereas the improvement in predicting east-west shifts of 

El Niño using the EMI SST index is  limited for forecasts initialised in the second half of the year (Figure 63b). 

In contrast to the improvement for prediction of El Niño, the prediction of the IOD is less skilful in POAMA2 

than POAMA1.5b, as evidenced by the lower correlation for the DMI index (Figure 62c).  Nevertheless, 

forecasts initialised prior to the maturation of the IOD in September through November have better skill in 

POAMA2 than POAMA1.5b especially at longer lead times (Figure 63c). In addition, skill in predicting the sea 

surface temperature in the eastern Indian Ocean, as monitored with the IODE SST index, is significantly 

higher in POAMA2 than POAMA 1.5b for forecasts initialised after July (Figure 63d). Because the surface 

temperature variations in the eastern Indian Ocean are a primary source of atmospheric variability over SEA 

(e.g. Cai et al. 2011), this improved prediction of the IODE SST index provides hope for improved prediction 

of SEA climate with POAMA2.   

              (a)                                                                                   (b) 
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Figure 62. Forecast accuracy as measured by correlation of the ensemble mean forecast with the verifying 
observations as a function of forecast lead time for the (a) NINO3; (b) EMI,  (c) DMI, and (d) SAM indices. Forecasts 
scores from POAMA2 are in red, from POAMA1.5b in blue and a reference persistence forecast is in green. Forecasts 

and verification are for 3 month means 
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Figure 63. Difference in forecast accuracy between POAMA2 and POAMA1.5b as measured by difference in the 
correlation of the ensemble mean prediction with verifying observations as a function of forecast start time and 
lead time for the (a) NINO3; (b) EMI, (c) DMI, (d) IODE SST index, (e) IODW SST index, and (f)  the SAM index. Pink 
(blue) color shadings indicate the increase (decrease) of forecast accuracy by POAMA2 compared to POAMA1.5b 

POAMA2 provides improved seasonal prediction of the SAM after lead time 1 month (Figure 62d), although 

the level of forecast skill is, not-surprisingly low (i.e., we do not expect high skill for predicting the SAM at 

long lead time because the SAM is primarily an internal mode of variability in the atmosphere with a 

characterstic decorrelation time of ~10 days). Nonetheless, we made a preliminary investigation of the 

feasibility of predicting the monthly SAM. The monthly SAM can be skilfully predicted by POAMA2 in the first 

month of the forecasts and is better than a persistence forecast (Figure 64), indicating that the POAMA 

model is able to represent some aspects of the future evolution of the SAM that depend on the initial 

conditions (presumably mainly due to atmospheric initial conditions). However, we also see that forecasts of 

the SAM that verify in late spring months are feasible by POAMA2 for lead times up to 8 months, which we 

attribute to the association of the SAM with El Niño in this season (L’Heureux and Thompson, 2006). 
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Consequently, spring season mean SAM is predictable by POAMA2 with a lead time of up to 3 months 

(Figure 64b). 

Figure 65 provides a summary of the predictive capability of POAMA2 for the key modes of climate 

variability that influence SEA rainfall.  Predictive skill for eastern and central Pacific ENSO is very high 

throughout the year and at lead times to at least 3 months. On the other hand, the predictive skill for the IOD 

and the SAM is highly seasonal, but higher skill is found in the seasons when IOD and SAM are important to 

rainfall in SEA (winter to spring for IOD and late spring for SAM). 

 

 

 

 

 

 

 

 

 

 

Figure 64. Forecast accuracy for predicting the monthly SAM index using a  persistence forecast (left) and POAMA2 
(right). Forecast accuracy, as a function of start month (ordinate) and lead time in months (abscissa), is measured 
using correlation of the ensemble mean forecast with the verification.  Sloping dotted lines indicate a constant 

verification time (as indicated by the intersection of the lines with the ordinate) 
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(a) 

 

(b) 

 

Figure 65. Forecast accuracy, as measured by correlation of the ensemble mean prediction with the verifying 
analysis, for the  NINO3, EMI, and IOD SST indices and the SAM index for 3 month mean data at lead time (a) zero 

month and (b) 3 month.  

In SEACI1 and SEACI1P, it was shown that the systematic surface cold bias over the entire tropical Pacific and 
warm bias off the west coast of South America in the POAMA1.5b model results in a westward shift of the 
maximum variability of sea-surface temperature associated with El Nino, thus hindering the skilful prediction 
of different types of ENSO and their impact on Australian rainfall using POAMA1.5b (Hendon et al., 2009). In 
developing POAMA2, we attempted to reduce the model’s mean surface temperature bias using two distinct 
approaches. We used a slightly different treatment of shallow convection that resulted in slightly less model 
drift. However, to more fully alleviate the model drift, we also used an explicit flux correction that virtually 
eliminated all of the drift in the surface climate. In particular, the flux correction effectively removes the cold 
bias in the tropical Pacific, thereby improving the model’s ability to distinguish the spatial patterns of ocean 
surface temperature associated with eastern Pacific and central Pacific El Niños. The predicted patterns of 
SST variation associated with eastern Pacific El Niño and central Pacific El Niño using the flux-corrected 
version of the model are more similar to their observed counterparts than are those from the non-flux 
corrected version of the model (not shown). Both versions of the model, however, continue to  produce patterns 
of surface temperature variation for the two types of El Niño that are more similar to each other than is observed 
(Figure 66). 
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Flux correction is also seen to improve the representation of the impact of El on Australian rainfall, especially 

in winter and at short lead times (Figure 67).   In the non-flux corrected version of the model, the model’s 

representation of the impact of eastern Pacific El Niño (as monitored with the NINO3 SST index)  on rainfall 

becomes spuriously positive at lead times 1 month and longer (Figure 67a). Flux correction at least 

postpones this spurious impact to lead times beyond 2 months.  And, the impact on rainfall by central Pacific 

El Niño (as monitored by the EMI) is better simulated to lead times of at least 3 months (Figure 67b). These 

improvements in the representation of the impact of El Niño on Australian rainfall appear to improve the 

predictive skill for rainfall in north-east SEA, where El Niño has the largest impact on rainfall in winter (Figure 

67c).  

 

  

 

 

 

 

 

 

 

 

Figure 66. Pattern correlation between eastern Pacific and central Pacific El Niños from non-flux corrected 
forecasts (p24a;blue), flux corrected forecasts (p24b;red) and based on observations (dotted). The correlations 

from POAMA are shown as a function of forecast lead time (months)
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Figure  67. Correlation of Australian rainfall in June-July-August with (a) the NINO3 index and (b) the El Niño 
Modoki Index (EMI). In (a) and (b) correlation based on observation is  compared to non-flux-corrected and flux-
corrected forecasts at lead times of zero to 4 months over 1980–2010. (c) Predictive skill (as measured by 
correlation of ensemble mean forecast) of winter rainfall at lead times from zero to 2 months 
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Finally, flux correction improves the mean position and intensity of the STR over eastern Australia in all 

seasons except for summer (not shown). Despite all these benefits of flux correction for depiction of 

variability within the forecasts, flux-corrected forecasts are not as skilful as non-flux-corrected forecasts in 

predicting the occurrence of El Niño and the IOD. Therefore, the final configuration of the POAMA2 

ensemble generation method combined forecasts from three different versions of the model: non-bias-

corrected, reduced bias by altered model physics, and explicit bias correction. 

We now compare forecast skill for predicting SEA rainfall using POAMA2 and POAMA1.5b. Seasonal rainfall 

for SEA is skilfully predicted both POAMA1.5b and POAMA2 for all seasons except late autumn and summer, 

as seen by hit rates for the prediction of above median (also called proportion correct or percent consistent 

score) greater than 55 percent over the majority of the region for lead time 1 month (Figure 68). Hit rates 

exceeding 50 percent are evident for forecasts to 3 months lead time for the later part of the year (late 

winter to early summer; not shown). Although hit rates are comparable between POAMA1.5b and POAMA2, 

POAMA2 has overall higher skill. Furthermore, POAMA2 has improved reliability (Figure 69),  especially if 

forecasts for the entire country are considered (not shown). Forecast reliability can be further improved by 

post processing (calibration with an inflation of variance method; right hand panels in Figure 69) but at the 

expense of reduced sharpness and, to a lesser degree, reduced resolution.   
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Figure 68. Hit rates (proportion of correct forecasts expressed in percentage) for predicting seasonal rainfall to be 
above median in POAMA1.5, POAMA2 and calibrated POAMA2 at a lead time of 1 month 
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Figure 69. Attributes diagrams of POAMA1.5b, POAMA2 and calibrated POAMA2 forecasts of above-median 
rainfall, over all grid points of south-eastern Australia for all 12 seasons in 1980–2006 at a lead time of 1 month.  
Perfectly reliable forecasts should line up with the diagonal line. Forecasts in the grey areas are considered to be 
reliable, as they are correct in predicting the occurrence or non-occurrence of an event and their errors are smaller 

than a climatological forecast. The size of dots represents forecast frequency in each probabilistic forecast 
category 

Finally, we compare the rainfall forecasts from POAMA2 to those from 3 models that contributed to the EU 

ENSEMBLES project (Weisheimer et al., 2009) in order to assess common successes/failures and to 

understand the benefit of true multi-model ensembles for Australian rainfall forecasts. This investigation 

suggests that as a single model, the ECMWF system3 has slightly higher skill for predicting Australian rainfall 

than any of the three single versions of POAMA2, whereas other ENSEMBLE models show similar or less skill 

than the single versions of POAMA2. However, the full 30 member ensemble of POAMA2 forecasts presents 

comparable or even slightly higher skill than ECMWF system3 over SEA in terms of both hit rates and 

reliability (Figure 70). Hit rates and reliability of predicting rainfall in SEA can be further increased beyond the 

best single model or POAMA2 if a multi-model average is created consisting of POAMA2 and the forecasts 

from the ECMWF, UK Met Office and Meteo-France forecast systems. In particular, this multi-model approach 

not only improves forecast reliability but also forecast resolution and sharpness, which are the forecast 

qualities that are difficult to increase unless independent information is added to the forecast system 

(Stephenson et al., 2005; Doblas-Reyes et al., 2006). For instance, statistical calibration improves forecast 

reliability but tends to reduce forecast sharpness while the multi-model ensemble improves all of them 

(Figure 70b).  Therefore, given the current capability of dynamical models, the multi-model ensemble 

approach is likely to be the best way of improving seasonal predictive skill and quality for regional climate. 
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(a) 

 

 

(b) 

 

Figure 70. (a) Hit rates and (b) attributes diagrams for predicting seasonal rainfall over south-eastern Australia to 
be above the median at a lead time of 1 month for four models: the European Centre for Medium-Range Weather 
Forecasts system 3 (ECMWF), POAMA2, calibrated POAMA2, and a multi-model ensemble system consisting of 

POAMA2, ECMWF, UK Met Office, and Meteo-France forecast systems. Forecasts over all grid points of SEA for the 
four major seasons in (a) are used in (b) 
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Conclusions 

As part of a continuous effort to improve the seasonal forecasting capability using the POAMA forecast 

system, a major upgrade has been made to POAMA (POAMA2) by improving the ocean initial conditions and 

the ensemble generation strategy. The improved ocean initial conditions, which are the source of long lead 

seasonal predictability, are provided by the new POAMA Ensemble Ocean Data Assimilation System 

(PEODAS). The new ensemble generation strategy produces a 10 member ensemble from 3 slightly different 

versions of the model. By combining three different model versions, forecasts from POAMA2 obtain the 

benefit of a multi-model approach (e.g. improved reliability without loss of sharpness) that offsets model 

errors.  

Our investigation shows that POAMA2 has improved skill compared to POAMA1.5b for predicting the 

occurrence of different types of El Niño in the Pacific and for predicting sea-surface temperature variations in 

the eastern Indian Ocean associated with the IOD. El Niño and the IOD are key sources of rainfall variability in 

SEA in winter and spring, so this improvement in the prediction of the occurrence of El Niño and the IOD is a 

positive step toward improved prediction of SEA climate. POAMA2 also shows improved prediction of the 

SAM compared to POAMA1.5b, although the level of forecast skill remains relatively low except for late 

spring. Skilful prediction of SAM in the late spring is indicated to a lead time of 3 months, which we attribute 

to the association of the SAM with El Niño in this season.  

The explicit flux-correction adopted in one version of POAMA2 effectively eliminates the tropical Pacific cold 

bias of the earlier versions of POAMA. This improved simulation of the mean state leads to better simulation 

of spatial patterns of sea-surface temperature variations associated with different types of El Niño, thus 

resulting in a more faithful representation of the impact of El Niño on SEA rainfall. Although forecasts from 

the bias corrected version of POAMA demonstrate improved representation of the relationship of Australian 

rainfall with El Niño, the predictions of the occurrence of El Niño and the IOD are not as accurate as those 

from the non-flux corrected models.  This result emphasizes the need to improve the representation of the 

mean state in future versions of the POAMA system but it also indicates that more work is required to 

understand what is controlling forecast skill for El Niño. 

Forecast skill from POAMA2 is comparable but slightly improved to that from POAMA1.5b in regard to 

forecast hit rates for rainfall exceeding the median over SEA. POAMA2 forecasts also have slightly better 

reliability due to the improved ensemble generation approach (this is much more apparent if all Australian 

land points are considered). Forecast reliability can be further improved by calibrating the forecasts with an 

inflation of variance technique. Although this technique significantly improves forecast reliability, it does so 

at the expense of forecast sharpness. Hence, there is no substitute for continued reduction in model error in 

order to improve forecast quality. The analysis of the representation of the relationship of the key modes of 

tropical variability with Australian rainfall indicates that forecast skill is being limited by model error and the 

upper limit of forecast skill has yet to be achieved. The systemtic westward shift of El Niño variability in the 

model contributes to this error, however there are probably other factors involved as well (e.g. bias in the 

latitudinal profile of the zonal wind) that need to be identified in order to progress the development of 

future versions of POAMA.  

Finally, we have assessed the seasonal forecasts from three of the models that contributed to the 

ENSEMBLES project (ECMWF, UK Met Office and Meteo-France). Seasonal forecasts of Australian rainfall from 

these systems are comparable in skill to those from POAMA2, while a multimodel forecast based on 

POAMA2 and these three models is overall the best forecast both in terms of accuracy and also reliability and 

sharpness. Until key model errors are eliminated in the POAMA system, a multi model approach appears to 

be the optimal method for providing regional climate forecasts with good forecast accuracy, reliability, 

resolution and sharpness. Nonetheless, the good progress from POAMA1.5b to POAMA2 suggests that it is 

feasible that accurate and reliable forecasts can be produced by a future version of POAMA. 
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Links to other projects 

This project is linked to Project 3.2, which plans to use downscaled and calibrated POAMA outputs to drive a 

hydrological model for streamflow predictions and to Project 1.1 explores the mechanism of climate 

variability in SEA.. 
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CHAPTER 7: PROJECT 3.2 

Hydrological application of seasonal predictions 

QJ Wang, David Robertson and Prafulla Pokhrel 

Abstract 

Previous work undertaken through SEACI established forecasting models by selecting predictors that use 

observed catchment and climate indices to represent the: 

• catchment condition at the forecast time 

• climate during the forecast period. 

In the second year of Phase 2 of SEACI, methods for incorporating the output of dynamic hydrological and 

climate models into the Bayesian joint probability modelling approach for seasonal streamflow forecasting 

have been investigated. Simulations from a dynamic hydrological model that represent the catchment 

condition at the forecast time were used to replace the selected predictors representing catchment 

condition at the forecast time, while seasonal rainfall forecasts from a dynamic climate model were used to 

replace selected predictors representing climate during the forecast period. These methods were evaluated 

for 21 catchments in eastern Australia that experience a wide range of hydrological and climate conditions. 

For catchment condition, replacing the selected predictors with hydrological model simulations resulted in 

little change in the predictive skill, reliability and robustness of streamflow forecasts. However, the use of 

hydrological modelling output for operational forecasting is attractive in that it eliminates the need for 

selecting predictors. As a result, it reduces the computational requirements to establish forecast models, and 

skill estimates based on forecasts of historical events are not artificially inflated, as can be the case with 

predictor selection. 

For climate, replacing the selected predictor with seasonal rainfall forecasts produced by a dynamic climate 

model produced mixed results, with increases in predictive skill of streamflow forecasts for some seasons 

and decreases in others. Bayesian model averaging over forecasting models that consider a range of climate 

predictors – including both climate indices and POAMA rainfall forecasts – appears to be an appropriate 

technique to produce forecasts that capture the strengths of all candidate predictors. However, the efficacy 

of Bayesian model averaging has yet to be appraised for seasonal streamflow forecasting and will require 

further research. 

A highlight of the project is the adoption of the Bayesian joint probability modelling approach and current 

research results by the Bureau of Meteorology. The Bureau officially commenced issuing seasonal 

streamflow forecasts for 21 locations in SEA to the public in December 2010.  
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Background 

Forecasts of future seasonal streamflows are potentially valuable to a range of water managers and users, 

including irrigators, urban and rural water-supply authorities, environmental managers and hydroelectricity 

generators. Such forecasts can inform planning and management decisions to maximise returns on 

investments and available water resources and to ensure security of supply (Plummer et al., 2009). 

Previous SEACI research has led to the development of a statistical method, the Bayesian joint probability 

(BJP) modelling approach, for forecasting seasonal streamflows at multiple sites (Wang et al., 2009; Wang 

and Robertson, 2011). The BJP approach uses a multivariate distribution to model the joint distribution of 

future streamflows and their predictors such as antecedent streamflows, El Niño – Southern Oscillation 

(ENSO) indices, and other climate indices. The model parameters and their uncertainties are inferred from 

historical data using a Bayesian method. Occurrences of zero streamflows are treated as censored data, 

having unknown precise values but equal to or below zero, in model parameter inference. The parameters 

are then used to produce joint probabilistic forecasts of streamflows at multiple sites for future events. 

Censored predictor values are augmented to ‘known’ values, and negative values in streamflow forecasts are 

converted to zero. 

A rigorous predictor selection method has also been established which selects predictors using the pseudo-

Bayes factor, a measure of the predictive performance of forecasting models. Predictors representing the 

catchment condition at the forecast time are selected from a pool of indices comprising antecedent 

streamflow and rainfall totals based on their ability to predict streamflows. Predictors representing the 

climate during the forecast period are selected from a pool of climate indices based on their ability to 

forecast rainfall. The final forecasting models combine the selected predictors to jointly forecast seasonal 

streamflow and rainfall at multiple sites. 

The observed indices used as predictors are simple and cannot fully describe the complexity of conditions at 

the time of forecast or how those conditions may evolve during the forecast period. Dynamical hydrological 

and climate models explicitly simulate the detailed dynamics of catchment or climate processes and 

therefore output from these models may better reflect the true sources of predictability. In the second year 

of Phase 2 of SEACI, work has focused on developing and evaluating methods for using the output of 

dynamic hydrological and climate models in the BJP modelling approach. 

Objectives 

The overall project objectives are to: 

• further develop and evaluate the BJP modelling approach for seasonal streamflow forecasting 

• incorporate dynamic climate and hydrological modelling into the BJP modelling approach 

• transfer the technology for practical applications. 

Specific objectives of the project in 2010/11 were to: 

• develop methods to incorporate dynamic climate and hydrological modelling into the BJP 

modelling approach  

• evaluate the performance of forecasts made using the developed methods on catchments 

experiencing a range of climate and hydrological conditions typical of SEA 

• transfer the technology of the BJP modelling approach for applications in SEA. 
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Methods 

Forecasts of seasonal (3-month) streamflow totals were produced on the first day of each month using the 

BJP modelling approach. The output of dynamic hydrological and climate models was incorporated into the 

BJP modelling approach in a manner consistent with the operational application. A dynamic hydrological 

model was used to produce simulations that represent only the catchment condition at the forecast time, 

while rainfall forecasts from a dynamic climate model were used to represent the climate during the forecast 

period. The impact on predictive skill, reliability and robustness of replacing the selected predictors with 

dynamic model outputs was assessed incrementally: first by replacing the catchment condition predictor, 

and then by replacing the climate predictor. 

The monthly water balance model, WAPABA (Wang et al. 2011), was used to produce simulations that 

represent only the catchment condition at the forecast time. These simulations were obtained by running 

the model to the forecast date using observed forcing data, to initialise the state variables, and then for the 

subsequent 3 months using monthly climatology mean forcing data. Variation in the simulated 3-month 

streamflow totals for a given month is solely due to differences in the initial conditions of the soil moisture 

and groundwater storages and not related to the climate forcing during the simulation period. Forecasts of 

3- month streamflow totals were produced using the BJP modelling approach using the WAPABA 

simulations and total streamflow for the previous month to replace the selected predictors representing 

catchment condition at the forecast date. Total streamflow for the previous month was included as a 

predictor as a form of data assimilation. 

Forecasts from POAMA, the Australian Bureau of Meteorology’s dynamic seasonal climate forecasting model 

(Lim et al., 2010), were used to represent climate during the forecast period. Forecasts of 3-month rainfall 

totals from POAMA 2.4a were used to replace the selected climate predictors in the seasonal streamflow 

forecasting models that used WAPABA simulations to represent catchment condition at the forecast time. 

The skill, reliability and robustness of streamflow forecasts were assessed using a cross-validation procedure. 

A new procedure was developed to produce cross-validation WAPABA simulations that allow the calibration 

of WAPABA parameters over a wide range of flow and climate conditions, while ensuring data for the 

forecast period had minimal influence on the calibrated parameters. WAPABA was calibrated using the 

entire data record except for the forecast year of interest and 2 years on either side (5 years in total). 

Simulations that represent only catchment condition at the forecast time were produced for the entire 

record and subsequently used in the BJP modelling approach to produce forecasts for the year of interest. 

This calibration, simulation and forecasting process was repeated for all years in the historical record. 

The performance of the streamflow forecasts (produced using the BJP modelling approach) and the output 

of dynamic climate and hydrological models were evaluated for 21 catchments in eastern Australia covering 

a wide range of climate and hydrological conditions including some catchments outside the SEACI region. 

Effort was also devoted to transferring the developed methods to the Bureau of Meteorology to support the 

improvement of the national service of seasonal streamflow forecasting. 

Results 

The skill of streamflow forecasts produced using the BJP modelling approach varies with catchment and 

season. Forecasts are more skilful for perennial streams in catchments that have large and active soil and 

groundwater storages and therefore long memory, for example inflows into Dartmouth and Hume reservoirs 

(Figure 71). Over SEA, forecasts tend to be the most skilful for spring and summer seasons when the annual 

hydrograph is receding. During these seasons, forecast streamflows are dominated by baseflows derived 
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from catchment soil and groundwater storages. The catchment condition predictors provide a good 

approximation of condition of these storages. Forecasts are least skilful when the dominant source of 

streamflows during the forecast period is concurrent rainfall. This occurs for autumn seasons over SEA when 

catchments are wetting up and the annual hydrograph is rising. The forecast probability distributions are 

reliable, with differences between the forecast probabilities corresponding to observed frequencies of 

events being within the range expected by sample variability. In general, the streamflow forecasts appear to 

be robust with minimal conditional bias with respect to time and forecast event size. However, temporal 

biases do appear in some catchments for autumn forecasts made after the late 1990s. 
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Figure 71.  Skill scores based on root-mean-square error in probability for cross-validation forecasts made using 
selected predictors for the period 1950–2008 for a sample of catchments in eastern Australia. Positive skill scores 

(red shading) indicate an improvement over a forecast made using the historical distribution of seasonal 
streamflow 

 

Replacing the selected predictors representing the catchment condition at the forecast time with WAPABA 

simulations produces little change in the average skill, reliability and robustness of streamflow forecasts for 

all catchments and seasons (Figure 72). The predictive skill scores typically change by less than 10 percent 

for individual catchments and seasons. Over SEA, improvements in skill scores tended to occur for forecasts 

made between May and December, which suggests that the WAPABA simulations represent the catchment 

condition at the forecast time better that the selected predictors. The use of WAPABA simulations for 

operational forecasting is attractive in that it eliminates the need for selecting predictors related to the initial 

catchment condition. As a result, it reduces the computational requirements to establish forecast models, 
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and skill estimates based on forecasts of historical events are not artificially inflated as can be the case with 

predictor selection. 
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Figure 72. Changes in skill scores based on root-mean-square error in probability when replacing selected 
predictors representing catchment conditions at the forecast time with WAPABA simulations and total streamflow 

for the previous month. Each point represents a single forecast location and season. Points above the 1:1 line 
represent an improvement in predictive skill 
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Replacing the selected climate predictors with forecasts of 3-month rainfall totals from POAMA produces no 

change in the average root-mean-square error in probability skill score for all seasons and catchments. 

However, the changes for individual seasons at some locations are as much as ± 30 percent, with changes 

exceeding ±10 percent for many seasons and locations (Figure 73). The increases in predictive skill arise 

when POAMA has skill in forecasting rainfall. This corresponds to forecasts made in March and between June 

and October for catchments in SEA. When POAMA rainfall forecasts are not skilful, they only add noise to the 

streamflow forecast and hence decrease the skill of streamflow forecasts. However, even when POAMA does 

have skill in forecasting rainfall, it does not always outperform the selected climate predictor. A hierarchical 

Bayesian model averaging (BMA) approach has been developed which can merge forecasts made using 

different predictors in such a way that that combines their strengths. The use of the hierarchical BMA 

approach for combining streamflow forecasts made using climate indices and all three sub-versions of 

POAMA is currently being evaluated. 
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Figure 73. Changes in skill scores based on root-mean-square error in probability from replacing selected 
predictors representing climate during the forecast period with forecasts of 3-month rainfall totals from POAMA. 
Each point represents a single forecast location and season. Points above the 1:1 line represent an improvement in 

predictive skill 

One of the highlights of this project (and the complementary seasonal streamflow forecasting project under 

the Water Information Research and Development Alliance (WIRADA) between CSIRO and the Bureau of 
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Meteorology) is the adoption of the BJP modelling system and current research results by the Bureau of 

Meteorology. A seasonal streamflow forecasting service, including a website, was developed in a 

collaboration between the Bureau, CSIRO and water managers. The Bureau’s Extended Hydrological 

Prediction team officially commenced issuing public operational forecasts for 21 locations in south east 

Australia in December 2010 (see <http://www.bom.gov.au/water/ssf/index.shtml>). An experimental 

forecasting service is currently offered for five other catchments in eastern Australia. These forecasts are 

produced using the BJP modelling system and the forecast verification systems developed through SEACI 

and WIRADA research. The website provides a suite of forecast products. Figure 74 shows one of the 

products. 

 

 

Figure 74. Seasonal streamflow forecast issued by the Bureau of Meteorology for total inflows to Dartmouth Dam 
for January to March 2011. The probabilistic forecast was produced by using the Bayesian joint probability 

modelling approach 
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Conclusions 

Operational implementation of the BJP modelling approach establishes forecasting models by selecting 

predictors that represent the two sources of streamflow predictability the: 

• catchment condition at the forecast time 

• climate during the forecast period. 

Research completed during the second year of Phase 2 of SEACI has established methods to incorporate the 

output of dynamic hydrological and climate models into the BJP modelling approach in a manner consistent 

with the operational application. Simulations from a dynamic hydrological model that represent the 

catchment condition at the forecast time were used to replace the selected predictors representing 

catchment condition at the forecast time, while seasonal rainfall forecasts from a dynamic climate model 

were used to replace selected predictors representing climate during the forecast period. These methods 

were evaluated for 21 catchments in eastern Australia that experience a wide range of hydrological and 

climate conditions. 

For catchment condition, replacing the selected predictors with hydrological model simulations resulted in 

little change in the predictive skill, reliability and robustness of streamflow forecasts. However, the use of 

hydrological modelling output for operational forecasting is attractive in that it eliminates the need for 

selecting predictors. As a result, it reduces the computational requirements to establish forecast models, and 

skill estimates based on forecasts of historical events are not artificially inflated, as can be the case with 

predictor selection. 

For climate, replacing the selected predictor with seasonal rainfall forecasts produced by a dynamic climate 

model produced mixed results, with increases in predictive skill of streamflow forecasts for some seasons 

and decreases in others. Bayesian model averaging  over forecasting models that consider a range of climate 

predictors – including both climate indices and POAMA rainfall forecasts – appears to be an appropriate 

technique to produce forecasts that capture the strengths of all candidate predictors. However, the efficacy 

of BMA has yet to be appraised for seasonal streamflow forecasting and will require further research. 

A highlight of the project is the adoption of the BJP modelling approach and current research results by the 

Bureau of Meteorology. The Bureau officially commenced issuing seasonal streamflow forecasts for 21 

locations in SEA to the public in December 2010. 

Links to other projects 

This project and WIRADA Project 4.2 (‘Seasonal to long-term water forecasting and prediction’) represent a 

joint effort in developing seasonal streamflow forecasting methods and tools for adoption by the Bureau 

and key water management agencies in Australia. 

The project has a strong linkage with Project 3.1 in Phase 2 of SEACI in two ways. The first is the use of 

dynamic climate model predictions for streamflow forecasting. The second is the use of the Bayesian joint 

probability method for calibration of climate model predictions to overcome bias and reliability problems 

and for combining dynamic modelling with empirical modelling to improve rainfall predictions. 

The project also draws on results from Project 1.1 in Phase 2 of SEACI, especially results on climate drivers. 
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CHAPTER 8: NEXT STEPS 

Research has progressed well in the second year of Phase 2 of SEACI. All projects are on track, already 

producing some very useful research findings, and all should continue producing innovative research and 

useful outputs for the remainder of Phase 2 of SEACI and beyond. 

This Chapter summarises proposed research directions for 2011/12. Progress against these research 

directions will be reported in the SEACI 2 Synthesis Report due to be released in September 2012. 

Theme 1: Understanding past hydroclimate variability and change 
in south-eastern Australia 

Research in Project 1.1 has led to a better understanding of the factors that influence climate and streamflow 

in south-eastern Australia (SEA). In 2011/12, work on understanding the SEA rainfall decline will continue 

with a new focus on daily rainfall. Research will also continue on the role of the meridional circulation in 

affecting the climate of SEA. Following on from the analysis of the ability of the CCSM3 model to reproduce 

the expansion of the Hadley cell and strengthening of the STR only if anthropogenic forcings are included in 

the model, this analysis will now be carried out with two additional models in order to strengthen this result. 

In addition, the ACCESS model will be used to investigate the response of the meridional circulation to 

different patterns of oceanic warming and other possible drivers. Finally, the role of the Australian monsoon 

in influencing the ongoing autumn rainfall deficit across SEA will be further investigated. 

Research in Project 1.2 will focus on using the CableDyn model to attribute observed hydrological responses 

to changes in major hydrometeorological drivers such as precipitation, temperature, CO2, wind and radiation. 

As part of this, the relationship between temperature and humidity will be investigated in order to explore its 

impact on the sensitivity of the water balance. Similarly, the role of CO2 will be explored by examining 

feedbacks that occur through biological and ecological processes such as vegetation structure and 

functioning. 

Theme 2: Long-term hydroclimate projections in south-eastern 
Australia 

Researchers in Project 2.1 will continue assessing the ability of global climate models to represent a range of 

important climate drivers and their relationship to rainfall across SEA. Additionally, the implications for  

climate projections of selecting and/or weighting a subset of global climate models will be further 

investigated. A range of downscaling methods including daily scaling, analogue downscaling, WRF dynamic 

modelling, and NHMM statistical downscaling will be assessed to investigate the relative uncertainties in the 

downscaling process. All of this information will be synthesised to inform the development of future climate 

series suitable for use in hydrologic modelling in SEA. 

Research in Project 2.2 will continue to explore the nature of the rainfall-temperature-streamflow 

relationship. In particular, the sensitivity of streamflow to temperature will be assessed by applying 

techniques (which have previously indicated a ~30 percent reduction in streamflow to a 1°C temperature 

rise) to the 34 catchments selected in 2010/11. Additionally, the 17 catchments with streamflow and 

groundwater data will be investigated further through a seasonal analysis and an assessment of the impact 

of farm dams, as well as determining how they have responded to the 2010/11 floods. Finally, the above 

information will be synthesised in order to investigate how to adapt hydrological models to represent these 

processes. 
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Theme 3: Seasonal hydroclimate prediction in south-eastern 
Australia 

Research in 2010/11 has shown that POAMA2 has good skill in predicting key climate drivers, especially those 

associated with ENSO. The very high rainfall received in 2010 provides an opportunity to assess the lead time 

at which the 2010 La Nina event could have been predicted, as well as the role of other predictable and 

unpredictable components of the climate that contributed to the very high rainfall received. The ability to 

represent extremely wet conditions months in advance would have enormous benefits to operational 

management of water in SEA. 

Research carried out in 2010/11 showed that using outputs from POAMA2 to represent climate during the 

forecast period produced mixed results, with increases in predictive skill in some seasons and decreases in 

others. Research in 2011/12 will focus on the use of Bayesian model averaging to select a range of candidates 

to form multiple forecast models. The candidates will include climate indices from the Pacific, Indian, and 

extra-tropical regions as well as POAMA predictions. This should lead to improved skill in forecasting 

seasonal streamflows across SEA. 
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